25 Ranges library [ranges]

25.1 General [ranges.general]

This Clause describes components for dealing with ranges of elements.
The following subclauses describe range and view requirements, and components for range primitives and range generators as summarized in Table 79.
Table 79: Ranges library summary [tab:range.summary]
Subclause
Header
Range access
<ranges>
Requirements
Range utilities
Range factories
Range adaptors
Range generators

25.2 Header <ranges> synopsis [ranges.syn]

#include <compare> // see [compare.syn] #include <initializer_list> // see [initializer.list.syn] #include <iterator> // see [iterator.synopsis] namespace std::ranges { inline namespace unspecified { // [range.access], range access inline constexpr unspecified begin = unspecified; // freestanding inline constexpr unspecified end = unspecified; // freestanding inline constexpr unspecified cbegin = unspecified; // freestanding inline constexpr unspecified cend = unspecified; // freestanding inline constexpr unspecified rbegin = unspecified; // freestanding inline constexpr unspecified rend = unspecified; // freestanding inline constexpr unspecified crbegin = unspecified; // freestanding inline constexpr unspecified crend = unspecified; // freestanding inline constexpr unspecified size = unspecified; // freestanding inline constexpr unspecified ssize = unspecified; // freestanding inline constexpr unspecified empty = unspecified; // freestanding inline constexpr unspecified data = unspecified; // freestanding inline constexpr unspecified cdata = unspecified; // freestanding } // [range.range], ranges template<class T> concept range = see below; // freestanding template<class T> constexpr bool enable_borrowed_range = false; // freestanding template<class T> concept borrowed_range = see below; // freestanding template<class T> using iterator_t = decltype(ranges::begin(declval<T&>())); // freestanding template<range R> using sentinel_t = decltype(ranges::end(declval<R&>())); // freestanding template<range R> using const_iterator_t = decltype(ranges::cbegin(declval<R&>())); // freestanding template<range R> using const_sentinel_t = decltype(ranges::cend(declval<R&>())); // freestanding template<range R> using range_difference_t = iter_difference_t<iterator_t<R>>; // freestanding template<sized_range R> using range_size_t = decltype(ranges::size(declval<R&>())); // freestanding template<range R> using range_value_t = iter_value_t<iterator_t<R>>; // freestanding template<range R> using range_reference_t = iter_reference_t<iterator_t<R>>; // freestanding template<range R> using range_const_reference_t = iter_const_reference_t<iterator_t<R>>; // freestanding template<range R> using range_rvalue_reference_t = iter_rvalue_reference_t<iterator_t<R>>; // freestanding template<range R> using range_common_reference_t = iter_common_reference_t<iterator_t<R>>; // freestanding // [range.sized], sized ranges template<class> constexpr bool disable_sized_range = false; // freestanding template<class T> concept sized_range = see below; // freestanding // [range.view], views template<class T> constexpr bool enable_view = see below; // freestanding struct view_base {}; // freestanding template<class T> concept view = see below; // freestanding // [range.refinements], other range refinements template<class R, class T> concept output_range = see below; // freestanding template<class T> concept input_range = see below; // freestanding template<class T> concept forward_range = see below; // freestanding template<class T> concept bidirectional_range = see below; // freestanding template<class T> concept random_access_range = see below; // freestanding template<class T> concept contiguous_range = see below; // freestanding template<class T> concept common_range = see below; // freestanding template<class T> concept viewable_range = see below; // freestanding template<class T> concept constant_range = see below; // freestanding // [view.interface], class template view_interface template<class D> requires is_class_v<D> && same_as<D, remove_cv_t<D>> class view_interface; // freestanding // [range.subrange], sub-ranges enum class subrange_kind : bool { unsized, sized }; // freestanding template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K = see below> requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>) class subrange; // freestanding template<class I, class S, subrange_kind K> constexpr bool enable_borrowed_range<subrange<I, S, K>> = true; // freestanding template<size_t N, class I, class S, subrange_kind K> requires ((N == 0 && copyable<I>) || N == 1) constexpr auto get(const subrange<I, S, K>& r); // freestanding template<size_t N, class I, class S, subrange_kind K> requires (N < 2) constexpr auto get(subrange<I, S, K>&& r); // freestanding } namespace std { using ranges::get; // freestanding } namespace std::ranges { // [range.dangling], dangling iterator handling struct dangling; // freestanding // [range.elementsof], class template elements_of template<range R, class Allocator = allocator<byte>> struct elements_of; template<range R> using borrowed_iterator_t = see below; // freestanding template<range R> using borrowed_subrange_t = see below; // freestanding // [range.utility.conv], range conversions template<class C, input_range R, class... Args> requires (!view<C>) constexpr C to(R&& r, Args&&... args); // freestanding template<template<class...> class C, input_range R, class... Args> constexpr auto to(R&& r, Args&&... args); // freestanding template<class C, class... Args> requires (!view<C>) constexpr auto to(Args&&... args); // freestanding template<template<class...> class C, class... Args> constexpr auto to(Args&&... args); // freestanding // [range.empty], empty view template<class T> requires is_object_v<T> class empty_view; // freestanding template<class T> constexpr bool enable_borrowed_range<empty_view<T>> = true; // freestanding namespace views { template<class T> constexpr empty_view<T> empty{}; // freestanding } // [range.single], single view template<move_constructible T> requires is_object_v<T> class single_view; // freestanding namespace views { inline constexpr unspecified single = unspecified; } // freestanding template<bool Const, class T> using maybe-const = conditional_t<Const, const T, T>; // exposition only // [range.iota], iota view template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t> requires weakly-equality-comparable-with<W, Bound> && copyable<W> class iota_view; // freestanding template<class W, class Bound> constexpr bool enable_borrowed_range<iota_view<W, Bound>> = true; // freestanding namespace views { inline constexpr unspecified iota = unspecified; } // freestanding // [range.repeat], repeat view template<move_constructible T, semiregular Bound = unreachable_sentinel_t> requires see below class repeat_view; // freestanding namespace views { inline constexpr unspecified repeat = unspecified; } // freestanding // [range.istream], istream view template<movable Val, class CharT, class Traits = char_traits<CharT>> requires see below class basic_istream_view; template<class Val> using istream_view = basic_istream_view<Val, char>; template<class Val> using wistream_view = basic_istream_view<Val, wchar_t>; namespace views { template<class T> constexpr unspecified istream = unspecified; } // [range.adaptor.object], range adaptor objects template<class D> requires is_class_v<D> && same_as<D, remove_cv_t<D>> class range_adaptor_closure { }; // freestanding // [range.all], all view namespace views { inline constexpr unspecified all = unspecified; // freestanding template<viewable_range R> using all_t = decltype(all(declval<R>())); // freestanding } // [range.ref.view], ref view template<range R> requires is_object_v<R> class ref_view; // freestanding template<class T> constexpr bool enable_borrowed_range<ref_view<T>> = true; // freestanding // [range.owning.view], owning view template<range R> requires see below class owning_view; // freestanding template<class T> constexpr bool enable_borrowed_range<owning_view<T>> = // freestanding enable_borrowed_range<T>; // [range.as.rvalue], as rvalue view template<view V> requires input_range<V> class as_rvalue_view; // freestanding template<class T> constexpr bool enable_borrowed_range<as_rvalue_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified as_rvalue = unspecified; } // freestanding // [range.filter], filter view template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class filter_view; // freestanding namespace views { inline constexpr unspecified filter = unspecified; } // freestanding // [range.transform], transform view template<input_range V, move_constructible F> requires view<V> && is_object_v<F> && regular_invocable<F&, range_reference_t<V>> && can-reference<invoke_result_t<F&, range_reference_t<V>>> class transform_view; // freestanding namespace views { inline constexpr unspecified transform = unspecified; } // freestanding // [range.take], take view template<view> class take_view; // freestanding template<class T> constexpr bool enable_borrowed_range<take_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified take = unspecified; } // freestanding // [range.take.while], take while view template<view V, class Pred> requires input_range<V> && is_object_v<Pred> && indirect_unary_predicate<const Pred, iterator_t<V>> class take_while_view; // freestanding namespace views { inline constexpr unspecified take_while = unspecified; } // freestanding // [range.drop], drop view template<view V> class drop_view; // freestanding template<class T> constexpr bool enable_borrowed_range<drop_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified drop = unspecified; } // freestanding // [range.drop.while], drop while view template<view V, class Pred> requires input_range<V> && is_object_v<Pred> && indirect_unary_predicate<const Pred, iterator_t<V>> class drop_while_view; // freestanding template<class T, class Pred> constexpr bool enable_borrowed_range<drop_while_view<T, Pred>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified drop_while = unspecified; } // freestanding // [range.join], join view template<input_range V> requires view<V> && input_range<range_reference_t<V>> class join_view; // freestanding namespace views { inline constexpr unspecified join = unspecified; } // freestanding // [range.join.with], join with view template<input_range V, forward_range Pattern> requires see below class join_with_view; // freestanding namespace views { inline constexpr unspecified join_with = unspecified; } // freestanding // [range.lazy.split], lazy split view template<class R> concept tiny-range = see below; // exposition only template<input_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> && (forward_range<V> || tiny-range<Pattern>) class lazy_split_view; // freestanding // [range.split], split view template<forward_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> class split_view; // freestanding namespace views { inline constexpr unspecified lazy_split = unspecified; // freestanding inline constexpr unspecified split = unspecified; // freestanding } // [range.concat], concat view template<input_range... Views> requires see below class concat_view; // freestanding namespace views { inline constexpr unspecified concat = unspecified; } // freestanding // [range.counted], counted view namespace views { inline constexpr unspecified counted = unspecified; } // freestanding // [range.common], common view template<view V> requires (!common_range<V> && copyable<iterator_t<V>>) class common_view; // freestanding template<class T> constexpr bool enable_borrowed_range<common_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified common = unspecified; } // freestanding // [range.reverse], reverse view template<view V> requires bidirectional_range<V> class reverse_view; // freestanding template<class T> constexpr bool enable_borrowed_range<reverse_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified reverse = unspecified; } // freestanding // [range.as.const], as const view template<input_range R> constexpr auto& possibly-const-range(R& r) noexcept { // exposition only if constexpr (constant_range<const R> && !constant_range<R>) { return const_cast<const R&>(r); } else { return r; } } template<view V> requires input_range<V> class as_const_view; // freestanding template<class T> constexpr bool enable_borrowed_range<as_const_view<T>> = // freestanding enable_borrowed_range<T>; namespace views { inline constexpr unspecified as_const = unspecified; } // freestanding // [range.elements], elements view template<input_range V, size_t N> requires see below class elements_view; // freestanding template<class T, size_t N> constexpr bool enable_borrowed_range<elements_view<T, N>> = // freestanding enable_borrowed_range<T>; template<class R> using keys_view = elements_view<R, 0>; // freestanding template<class R> using values_view = elements_view<R, 1>; // freestanding namespace views { template<size_t N> constexpr unspecified elements = unspecified; // freestanding inline constexpr auto keys = elements<0>; // freestanding inline constexpr auto values = elements<1>; // freestanding } // [range.enumerate], enumerate view template<view V> requires see below class enumerate_view; // freestanding template<class View> constexpr bool enable_borrowed_range<enumerate_view<View>> = // freestanding enable_borrowed_range<View>; namespace views { inline constexpr unspecified enumerate = unspecified; } // freestanding // [range.zip], zip view template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) class zip_view; // freestanding template<class... Views> constexpr bool enable_borrowed_range<zip_view<Views...>> = // freestanding (enable_borrowed_range<Views> && ...); namespace views { inline constexpr unspecified zip = unspecified; } // freestanding // [range.zip.transform], zip transform view template<move_constructible F, input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> && regular_invocable<F&, range_reference_t<Views>...> && can-reference<invoke_result_t<F&, range_reference_t<Views>...>> class zip_transform_view; // freestanding namespace views { inline constexpr unspecified zip_transform = unspecified; } // freestanding // [range.adjacent], adjacent view template<forward_range V, size_t N> requires view<V> && (N > 0) class adjacent_view; // freestanding template<class V, size_t N> constexpr bool enable_borrowed_range<adjacent_view<V, N>> = // freestanding enable_borrowed_range<V>; namespace views { template<size_t N> constexpr unspecified adjacent = unspecified; // freestanding inline constexpr auto pairwise = adjacent<2>; // freestanding } // [range.adjacent.transform], adjacent transform view template<forward_range V, move_constructible F, size_t N> requires see below class adjacent_transform_view; // freestanding namespace views { template<size_t N> constexpr unspecified adjacent_transform = unspecified; // freestanding inline constexpr auto pairwise_transform = adjacent_transform<2>; // freestanding } // [range.chunk], chunk view template<view V> requires input_range<V> class chunk_view; // freestanding template<view V> requires forward_range<V> class chunk_view<V>; // freestanding template<class V> constexpr bool enable_borrowed_range<chunk_view<V>> = // freestanding forward_range<V> && enable_borrowed_range<V>; namespace views { inline constexpr unspecified chunk = unspecified; } // freestanding // [range.slide], slide view template<forward_range V> requires view<V> class slide_view; // freestanding template<class V> constexpr bool enable_borrowed_range<slide_view<V>> = // freestanding enable_borrowed_range<V>; namespace views { inline constexpr unspecified slide = unspecified; } // freestanding // [range.chunk.by], chunk by view template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class chunk_by_view; // freestanding namespace views { inline constexpr unspecified chunk_by = unspecified; } // freestanding // [range.stride], stride view template<input_range V> requires view<V> class stride_view; // freestanding template<class V> constexpr bool enable_borrowed_range<stride_view<V>> = // freestanding enable_borrowed_range<V>; namespace views { inline constexpr unspecified stride = unspecified; } // freestanding // [range.cartesian], cartesian product view template<input_range First, forward_range... Vs> requires (view<First> && ... && view<Vs>) class cartesian_product_view; // freestanding namespace views { inline constexpr unspecified cartesian_product = unspecified; } // freestanding } namespace std { namespace views = ranges::views; // freestanding template<class T> struct tuple_size; // freestanding template<size_t I, class T> struct tuple_element; // freestanding template<class I, class S, ranges::subrange_kind K> struct tuple_size<ranges::subrange<I, S, K>> // freestanding : integral_constant<size_t, 2> {}; template<class I, class S, ranges::subrange_kind K> struct tuple_element<0, ranges::subrange<I, S, K>> { // freestanding using type = I; }; template<class I, class S, ranges::subrange_kind K> struct tuple_element<1, ranges::subrange<I, S, K>> { // freestanding using type = S; }; template<class I, class S, ranges::subrange_kind K> struct tuple_element<0, const ranges::subrange<I, S, K>> { // freestanding using type = I; }; template<class I, class S, ranges::subrange_kind K> struct tuple_element<1, const ranges::subrange<I, S, K>> { // freestanding using type = S; }; struct from_range_t { explicit from_range_t() = default; }; // freestanding inline constexpr from_range_t from_range{}; // freestanding }
Within this Clause, for an integer-like type X ([iterator.concept.winc]), make-unsigned-like-t<X> denotes make_unsigned_t<X> if X is an integer type; otherwise, it denotes a corresponding unspecified unsigned-integer-like type of the same width as X.
For an expression x of type X, to-unsigned-like(x) is x explicitly converted to make-unsigned-like-t<X>.
Also within this Clause, make-signed-like-t<X> for an integer-like type X denotes make_signed_t<X> if X is an integer type; otherwise, it denotes a corresponding unspecified signed-integer-like type of the same width as X.

25.3 Range access [range.access]

25.3.1 General [range.access.general]

In addition to being available via inclusion of the <ranges> header, the customization point objects in [range.access] are available when the header <iterator> is included.
Within [range.access], the reified object of a subexpression E denotes
  • the same object as E if E is a glvalue, or
  • the result of applying the temporary materialization conversion ([conv.rval]) to E otherwise.

25.3.2 ranges​::​begin [range.access.begin]

The name ranges​::​begin denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​begin(E) is ill-formed.
  • Otherwise, if T is an array type ([dcl.array]) and remove_all_extents_t<T> is an incomplete type, ranges​::​begin(E) is ill-formed with no diagnostic required.
  • Otherwise, if T is an array type, ranges​::​begin(E) is expression-equivalent to t + 0.
  • Otherwise, if auto(t.begin()) is a valid expression whose type models input_or_output_iterator, ranges​::​begin(E) is expression-equivalent to auto(t.begin()).
  • Otherwise, if T is a class or enumeration type and auto(begin(t)) is a valid expression whose type models input_or_output_iterator where the meaning of begin is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]), then ranges​::​begin(E) is expression-equivalent to that expression.
  • Otherwise, ranges​::​begin(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​begin(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​begin(E) is a valid expression, its type models input_or_output_iterator.
— end note]

25.3.3 ranges​::​end [range.access.end]

The name ranges​::​end denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​end(E) is ill-formed.
  • Otherwise, if T is an array type ([dcl.array]) and remove_all_extents_t<T> is an incomplete type, ranges​::​end(E) is ill-formed with no diagnostic required.
  • Otherwise, if T is an array of unknown bound, ranges​::​end(E) is ill-formed.
  • Otherwise, if T is an array, ranges​::​end(E) is expression-equivalent to t + extent_v<T>.
  • Otherwise, if auto(t.end()) is a valid expression whose type models sentinel_for<iterator_t<T>> then ranges​::​end(E) is expression-equivalent to auto(t.end()).
  • Otherwise, if T is a class or enumeration type and auto(end(t)) is a valid expression whose type models sentinel_for<iterator_t<T>> where the meaning of end is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]), then ranges​::​end(E) is expression-equivalent to that expression.
  • Otherwise, ranges​::​end(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​end(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​end(E) is a valid expression, the types S and I of ranges​::​end(E) and ranges​::​begin(E) model sentinel_for<S, I>.
— end note]

25.3.4 ranges​::​cbegin [range.access.cbegin]

The name ranges​::​cbegin denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​cbegin(E) is ill-formed.
  • Otherwise, let U be ranges​::​begin(possibly-const-range(t)).
    ranges​::​cbegin(E) is expression-equivalent to const_iterator<decltype(U)>(U).
[Note 1: 
Whenever ranges​::​cbegin(E) is a valid expression, its type models input_or_output_iterator and constant-iterator.
— end note]

25.3.5 ranges​::​cend [range.access.cend]

The name ranges​::​cend denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​cend(E) is ill-formed.
  • Otherwise, let U be ranges​::​end(possibly-const-range(t)).
    ranges​::​cend(E) is expression-equivalent to const_sentinel<decltype(U)>(U).
[Note 1: 
Whenever ranges​::​cend(E) is a valid expression, the types S and I of the expressions ranges​::​cend(E) and ranges​::​cbegin(E) model sentinel_for<S, I>.
If S models input_iterator, then S also models constant-iterator.
— end note]

25.3.6 ranges​::​rbegin [range.access.rbegin]

The name ranges​::​rbegin denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​rbegin(E) is ill-formed.
  • Otherwise, if T is an array type ([dcl.array]) and remove_all_extents_t<T> is an incomplete type, ranges​::​rbegin(E) is ill-formed with no diagnostic required.
  • Otherwise, if auto(t.rbegin()) is a valid expression whose type models input_or_output_iterator, ranges​::​rbegin(E) is expression-equivalent to auto(t.rbegin()).
  • Otherwise, if T is a class or enumeration type and auto(rbegin(t)) is a valid expression whose type models input_or_output_iterator where the meaning of rbegin is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]), then ranges​::​rbegin(E) is expression-equivalent to that expression.
  • Otherwise, if both ranges​::​begin(t) and ranges​::​end(t) are valid expressions of the same type which models bidirectional_iterator ([iterator.concept.bidir]), ranges​::​rbegin(E) is expression-equivalent to make_reverse_iterator(ranges​::​end(t)).
  • Otherwise, ranges​::​rbegin(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​rbegin(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​rbegin(E) is a valid expression, its type models input_or_output_iterator.
— end note]

25.3.7 ranges​::​rend [range.access.rend]

The name ranges​::​rend denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​rend(E) is ill-formed.
  • Otherwise, if T is an array type ([dcl.array]) and remove_all_extents_t<T> is an incomplete type, ranges​::​rend(E) is ill-formed with no diagnostic required.
  • Otherwise, if auto(t.rend()) is a valid expression whose type models sentinel_for<decltype(​ranges​::​rbegin(E))> then ranges​::​rend(E) is expression-equivalent to auto(t.rend()).
  • Otherwise, if T is a class or enumeration type and auto(rend(t)) is a valid expression whose type models sentinel_for<decltype(ranges​::​rbegin(E))> where the meaning of rend is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]), then ranges​::​rend(E) is expression-equivalent to that expression.
  • Otherwise, if both ranges​::​begin(t) and ranges​::​end(t) are valid expressions of the same type which models bidirectional_iterator ([iterator.concept.bidir]), then ranges​::​rend(E) is expression-equivalent to make_reverse_iterator(ranges​::​begin(t)).
  • Otherwise, ranges​::​rend(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​rend(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​rend(E) is a valid expression, the types S and I of the expressions ranges​::​rend(E) and ranges​::​rbegin(E) model sentinel_for<S, I>.
— end note]

25.3.8 ranges​::​crbegin [range.access.crbegin]

The name ranges​::​crbegin denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​crbegin(E) is ill-formed.
  • Otherwise, let U be ranges​::​rbegin(possibly-const-range(t)).
    ranges​::​crbegin(E) is expression-equivalent to const_iterator<decltype(U)>(U).
[Note 1: 
Whenever ranges​::​crbegin(E) is a valid expression, its type models input_or_output_iterator and constant-iterator.
— end note]

25.3.9 ranges​::​crend [range.access.crend]

The name ranges​::​crend denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​crend(E) is ill-formed.
  • Otherwise, let U be ranges​::​rend(possibly-const-range(t)).
    ranges​::​crend(E) is expression-equivalent to const_sentinel<decltype(U)>(U).
[Note 1: 
Whenever ranges​::​crend(E) is a valid expression, the types S and I of the expressions ranges​::​crend(E) and ranges​::​crbegin(E) model sentinel_for<S, I>.
If S models input_iterator, then S also models constant-iterator.
— end note]

25.3.10 ranges​::​size [range.prim.size]

The name ranges​::​size denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If T is an array of unknown bound ([dcl.array]), ranges​::​size(E) is ill-formed.
  • Otherwise, if T is an array type, ranges​::​size(E) is expression-equivalent to auto(extent_v<T>).
  • Otherwise, if disable_sized_range<remove_cv_t<T>> ([range.sized]) is false and auto(t.size()) is a valid expression of integer-like type ([iterator.concept.winc]), ranges​::​size(E) is expression-equivalent to auto(​t.size()).
  • Otherwise, if T is a class or enumeration type, disable_sized_range<remove_cv_t<T>> is false and auto(size(t)) is a valid expression of integer-like type where the meaning of size is established as-if by performing argument-dependent lookup only ([basic.lookup.argdep]), then ranges​::​size(E) is expression-equivalent to that expression.
  • Otherwise, if to-unsigned-like(ranges​::​end(t) - ranges​::​begin(t)) ([ranges.syn]) is a valid expression and the types I and S of ranges​::​begin(t) and ranges​::​end(t) (respectively) model both sized_sentinel_for<S, I> ([iterator.concept.sizedsentinel]) and forward_iterator<I>, then ranges​::​size(E) is expression-equivalent to to-unsigned-like(ranges​::​end(t) - ranges​::​begin(t)).
  • Otherwise, ranges​::​size(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​size(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​size(E) is a valid expression, its type is integer-like.
— end note]

25.3.11 ranges​::​ssize [range.prim.ssize]

The name ranges​::​ssize denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
If ranges​::​size(t) is ill-formed, ranges​::​ssize(E) is ill-formed.
Otherwise let D be make-signed-like-t<decltype(ranges​::​​size(t))>, or ptrdiff_t if it is wider than that type; ranges​::​ssize(E) is expression-equivalent to static_cast<D>(ranges​::​size(t)).

25.3.12 ranges​::​empty [range.prim.empty]

The name ranges​::​empty denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If T is an array of unknown bound ([dcl.array]), ranges​::​empty(E) is ill-formed.
  • Otherwise, if bool(t.empty()) is a valid expression, ranges​::​empty(E) is expression-equivalent to bool(t.empty()).
  • Otherwise, if (ranges​::​size(t) == 0) is a valid expression, ranges​::​empty(E) is expression-equivalent to (ranges​::​size(t) == 0).
  • Otherwise, if bool(ranges​::​begin(t) == ranges​::​end(t)) is a valid expression and the type of ranges​::​begin(t) models forward_iterator, ranges​::​empty(E) is expression-equivalent to bool(​ranges​::​begin(t) == ranges​::​end(t)).
  • Otherwise, ranges​::​empty(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​empty(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​empty(E) is a valid expression, it has type bool.
— end note]

25.3.13 ranges​::​data [range.prim.data]

The name ranges​::​data denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​data(E) is ill-formed.
  • Otherwise, if T is an array type ([dcl.array]) and remove_all_extents_t<T> is an incomplete type, ranges​::​data(E) is ill-formed with no diagnostic required.
  • Otherwise, if auto(t.data()) is a valid expression of pointer to object type, ranges​::​data(E) is expression-equivalent to auto(t.data()).
  • Otherwise, if ranges​::​begin(t) is a valid expression whose type models contiguous_iterator, ranges​::​data(E) is expression-equivalent to to_address(ranges​::​begin(t)).
  • Otherwise, ranges​::​data(E) is ill-formed.
[Note 1: 
Diagnosable ill-formed cases above result in substitution failure when ranges​::​data(E) appears in the immediate context of a template instantiation.
— end note]
[Note 2: 
Whenever ranges​::​data(E) is a valid expression, it has pointer to object type.
— end note]

25.3.14 ranges​::​cdata [range.prim.cdata]

template<class T> constexpr auto as-const-pointer(const T* p) noexcept { return p; } // exposition only
The name ranges​::​cdata denotes a customization point object ([customization.point.object]).
Given a subexpression E with type T, let t be an lvalue that denotes the reified object for E.
Then:
  • If E is an rvalue and enable_borrowed_range<remove_cv_t<T>> is false, ranges​::​cdata(E) is ill-formed.
  • Otherwise, ranges​::​cdata(E) is expression-equivalent to as-const-pointer(ranges​::​data(possibly-const-range(t))).
[Note 1: 
Whenever ranges​::​cdata(E) is a valid expression, it has pointer to constant object type.
— end note]

25.4 Range requirements [range.req]

25.4.1 General [range.req.general]

Ranges are an abstraction that allows a C++ program to operate on elements of data structures uniformly.
Calling ranges​::​begin on a range returns an object whose type models input_or_output_iterator ([iterator.concept.iterator]).
Calling ranges​::​end on a range returns an object whose type S, together with the type I of the object returned by ranges​::​begin, models sentinel_for<S, I>.
The library formalizes the interfaces, semantics, and complexity of ranges to enable algorithms and range adaptors that work efficiently on different types of sequences.
The range concept requires that ranges​::​begin and ranges​::​end return an iterator and a sentinel, respectively.
The sized_range concept refines range with the requirement that ranges​::​size be amortized .
The view concept specifies requirements on a range type to provide operations with predictable complexity.
Several refinements of range group requirements that arise frequently in concepts and algorithms.
Common ranges are ranges for which ranges​::​begin and ranges​::​end return objects of the same type.
Random access ranges are ranges for which ranges​::​begin returns a type that models random_access_iterator ([iterator.concept.random.access]).
(Contiguous, bidirectional, forward, input, and output ranges are defined similarly.)
Viewable ranges can be converted to views.

25.4.2 Ranges [range.range]

The range concept defines the requirements of a type that allows iteration over its elements by providing an iterator and sentinel that denote the elements of the range.
template<class T> concept range = requires(T& t) { ranges::begin(t); // sometimes equality-preserving (see below) ranges::end(t); };
Given an expression t such that decltype((t)) is T&, T models range only if
  • [ranges​::​begin(t), ranges​::​end(t)) denotes a range ([iterator.requirements.general]),
  • both ranges​::​begin(t) and ranges​::​end(t) are amortized constant time and non-modifying, and
  • if the type of ranges​::​begin(t) models forward_iterator, ranges​::​begin(t) is equality-preserving.
[Note 1: 
Equality preservation of both ranges​::​begin and ranges​::​end enables passing a range whose iterator type models forward_iterator to multiple algorithms and making multiple passes over the range by repeated calls to ranges​::​begin and ranges​::​end.
Since ranges​::​begin is not required to be equality-preserving when the return type does not model forward_iterator, it is possible for repeated calls to not return equal values or to not be well-defined.
— end note]
template<class T> concept borrowed_range = range<T> && (is_lvalue_reference_v<T> || enable_borrowed_range<remove_cvref_t<T>>);
Let U be remove_reference_t<T> if T is an rvalue reference type, and T otherwise.
Given a variable u of type U, T models borrowed_range only if the validity of iterators obtained from u is not tied to the lifetime of that variable.
[Note 2: 
Since the validity of iterators is not tied to the lifetime of a variable whose type models borrowed_range, a function with a parameter of such a type can return iterators obtained from it without danger of dangling.
— end note]
template<class> constexpr bool enable_borrowed_range = false;
Remarks: Pursuant to [namespace.std], users may specialize enable_borrowed_range for cv-unqualified program-defined types.
Such specializations shall be usable in constant expressions ([expr.const]) and have type const bool.
[Example 1: 
Each specialization S of class template subrange ([range.subrange]) models borrowed_range because
  • enable_borrowed_range<S> is specialized to have the value true, and
  • S's iterators do not have validity tied to the lifetime of an S object because they are “borrowed” from some other range.
— end example]

25.4.3 Sized ranges [range.sized]

The sized_range concept refines range with the requirement that the number of elements in the range can be determined in amortized constant time using ranges​::​size.
template<class T> concept sized_range = range<T> && requires(T& t) { ranges::size(t); };
Given an lvalue t of type remove_reference_t<T>, T models sized_range only if
  • ranges​::​size(t) is amortized , does not modify t, and is equal to ranges​::​distance(​ranges​::​begin(t), ranges​::​end(t)), and
  • if iterator_t<T> models forward_iterator, ranges​::​size(t) is well-defined regardless of the evaluation of ranges​::​begin(t).
    [Note 1: 
    ranges​::​size(t) is otherwise not required to be well-defined after evaluating ranges​::​begin(t).
    For example, it is possible for ranges​::​size(t) to be well-defined for a sized_range whose iterator type does not model forward_iterator only if evaluated before the first call to ranges​::​begin(t).
    — end note]
template<class> constexpr bool disable_sized_range = false;
Remarks: Pursuant to [namespace.std], users may specialize disable_sized_range for cv-unqualified program-defined types.
Such specializations shall be usable in constant expressions ([expr.const]) and have type const bool.
[Note 2: 
disable_sized_range allows use of range types with the library that satisfy but do not in fact model sized_range.
— end note]

25.4.4 Views [range.view]

The view concept specifies the requirements of a range type that has the semantic properties below, which make it suitable for use in constructing range adaptor pipelines ([range.adaptors]).
template<class T> concept view = range<T> && movable<T> && enable_view<T>;
T models view only if
  • T has move construction; and
  • move assignment of an object of type T is no more complex than destruction followed by move construction; and
  • if N copies and/or moves are made from an object of type T that contained M elements, then those N objects have destruction; and
  • copy_constructible<T> is false, or T has copy construction; and
  • copyable<T> is false, or copy assignment of an object of type T is no more complex than destruction followed by copy construction.
[Note 1: 
The constraints on copying and moving imply that a moved-from object of type T has destruction.
— end note]
[Example 1: 
Examples of views are:
  • A range type that wraps a pair of iterators.
  • A range type that holds its elements by shared_ptr and shares ownership with all its copies.
  • A range type that generates its elements on demand.
A container such as vector<string> does not meet the semantic requirements of view since copying the container copies all of the elements, which cannot be done in constant time.
— end example]
Since the difference between range and view is largely semantic, the two are differentiated with the help of enable_view.
template<class T> constexpr bool is-derived-from-view-interface = see below; // exposition only template<class T> constexpr bool enable_view = derived_from<T, view_base> || is-derived-from-view-interface<T>;
For a type T, is-derived-from-view-interface<T> is true if and only if T has exactly one public base class view_interface<U> for some type U and T has no base classes of type view_interface<V> for any other type V.
Remarks: Pursuant to [namespace.std], users may specialize enable_view to true for cv-unqualified program-defined types which model view, and false for types which do not.
Such specializations shall be usable in constant expressions ([expr.const]) and have type const bool.

25.4.5 Other range refinements [range.refinements]

The output_range concept specifies requirements of a range type for which ranges​::​begin returns a model of output_iterator ([iterator.concept.output]).
template<class R, class T> concept output_range = range<R> && output_iterator<iterator_t<R>, T>; template<class T> concept input_range = range<T> && input_iterator<iterator_t<T>>; template<class T> concept forward_range = input_range<T> && forward_iterator<iterator_t<T>>; template<class T> concept bidirectional_range = forward_range<T> && bidirectional_iterator<iterator_t<T>>; template<class T> concept random_access_range = bidirectional_range<T> && random_access_iterator<iterator_t<T>>;
contiguous_range additionally requires that the ranges​::​data customization point object ([range.prim.data]) is usable with the range.
template<class T> concept contiguous_range = random_access_range<T> && contiguous_iterator<iterator_t<T>> && requires(T& t) { { ranges::data(t) } -> same_as<add_pointer_t<range_reference_t<T>>>; };
Given an expression t such that decltype((t)) is T&, T models contiguous_range only if to_address(​ranges​::​begin(t)) == ranges​::​data(t) is true.
The common_range concept specifies requirements of a range type for which ranges​::​begin and ranges​::​end return objects of the same type.
[Example 1: 
The standard containers ([containers]) model common_range.
— end example]
template<class T> concept common_range = range<T> && same_as<iterator_t<T>, sentinel_t<T>>;
template<class R> constexpr bool is-initializer-list = see below; // exposition only
For a type R, is-initializer-list<R> is true if and only if remove_cvref_t<R> is a specialization of initializer_list.
The viewable_range concept specifies the requirements of a range type that can be converted to a view safely.
template<class T> concept viewable_range = range<T> && ((view<remove_cvref_t<T>> && constructible_from<remove_cvref_t<T>, T>) || (!view<remove_cvref_t<T>> && (is_lvalue_reference_v<T> || (movable<remove_reference_t<T>> && !is-initializer-list<T>))));
The constant_range concept specifies the requirements of a range type whose elements are not modifiable.
template<class T> concept constant_range = input_range<T> && constant-iterator<iterator_t<T>>;

25.5 Range utilities [range.utility]

25.5.1 General [range.utility.general]

The components in [range.utility] are general utilities for representing and manipulating ranges.

25.5.2 Helper concepts [range.utility.helpers]

Many of the types in [range.utility] are specified in terms of the following exposition-only concepts: template<class R> concept simple-view = // exposition only view<R> && range<const R> && same_as<iterator_t<R>, iterator_t<const R>> && same_as<sentinel_t<R>, sentinel_t<const R>>; template<class I> concept has-arrow = // exposition only input_iterator<I> && (is_pointer_v<I> || requires(I i) { i.operator->(); }); template<class T, class U> concept different-from = // exposition only !same_as<remove_cvref_t<T>, remove_cvref_t<U>>; template<class R> concept range-with-movable-references = // exposition only input_range<R> && move_constructible<range_reference_t<R>> && move_constructible<range_rvalue_reference_t<R>>;

25.5.3 View interface [view.interface]

25.5.3.1 General [view.interface.general]

The class template view_interface is a helper for defining view-like types that offer a container-like interface.
It is parameterized with the type that is derived from it.
namespace std::ranges { template<class D> requires is_class_v<D> && same_as<D, remove_cv_t<D>> class view_interface { private: constexpr D& derived() noexcept { // exposition only return static_cast<D&>(*this); } constexpr const D& derived() const noexcept { // exposition only return static_cast<const D&>(*this); } public: constexpr bool empty() requires sized_range<D> || forward_range<D> { if constexpr (sized_range<D>) return ranges::size(derived()) == 0; else return ranges::begin(derived()) == ranges::end(derived()); } constexpr bool empty() const requires sized_range<const D> || forward_range<const D> { if constexpr (sized_range<const D>) return ranges::size(derived()) == 0; else return ranges::begin(derived()) == ranges::end(derived()); } constexpr auto cbegin() requires input_range<D> { return ranges::cbegin(derived()); } constexpr auto cbegin() const requires input_range<const D> { return ranges::cbegin(derived()); } constexpr auto cend() requires input_range<D> { return ranges::cend(derived()); } constexpr auto cend() const requires input_range<const D> { return ranges::cend(derived()); } constexpr explicit operator bool() requires requires { ranges::empty(derived()); } { return !ranges::empty(derived()); } constexpr explicit operator bool() const requires requires { ranges::empty(derived()); } { return !ranges::empty(derived()); } constexpr auto data() requires contiguous_iterator<iterator_t<D>> { return to_address(ranges::begin(derived())); } constexpr auto data() const requires range<const D> && contiguous_iterator<iterator_t<const D>> { return to_address(ranges::begin(derived())); } constexpr auto size() requires forward_range<D> && sized_sentinel_for<sentinel_t<D>, iterator_t<D>> { return to-unsigned-like(ranges::end(derived()) - ranges::begin(derived())); } constexpr auto size() const requires forward_range<const D> && sized_sentinel_for<sentinel_t<const D>, iterator_t<const D>> { return to-unsigned-like(ranges::end(derived()) - ranges::begin(derived())); } constexpr decltype(auto) front() requires forward_range<D>; constexpr decltype(auto) front() const requires forward_range<const D>; constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>; constexpr decltype(auto) back() const requires bidirectional_range<const D> && common_range<const D>; template<random_access_range R = D> constexpr decltype(auto) operator[](range_difference_t<R> n) { return ranges::begin(derived())[n]; } template<random_access_range R = const D> constexpr decltype(auto) operator[](range_difference_t<R> n) const { return ranges::begin(derived())[n]; } }; }
The template parameter D for view_interface may be an incomplete type.
Before any member of the resulting specialization of view_interface other than special member functions is referenced, D shall be complete, and model both derived_from<view_interface<D>> and view.

25.5.3.2 Members [view.interface.members]

constexpr decltype(auto) front() requires forward_range<D>; constexpr decltype(auto) front() const requires forward_range<const D>;
Preconditions: !empty() is true.
Effects: Equivalent to: return *ranges​::​begin(derived());
constexpr decltype(auto) back() requires bidirectional_range<D> && common_range<D>; constexpr decltype(auto) back() const requires bidirectional_range<const D> && common_range<const D>;
Preconditions: !empty() is true.
Effects: Equivalent to: return *ranges​::​prev(ranges​::​end(derived()));

25.5.4 Sub-ranges [range.subrange]

25.5.4.1 General [range.subrange.general]

The subrange class template combines together an iterator and a sentinel into a single object that models the view concept.
Additionally, it models the sized_range concept when the final template parameter is subrange_kind​::​sized.
namespace std::ranges { template<class From, class To> concept uses-nonqualification-pointer-conversion = // exposition only is_pointer_v<From> && is_pointer_v<To> && !convertible_to<remove_pointer_t<From>(*)[], remove_pointer_t<To>(*)[]>; template<class From, class To> concept convertible-to-non-slicing = // exposition only convertible_to<From, To> && !uses-nonqualification-pointer-conversion<decay_t<From>, decay_t<To>>; template<class T, class U, class V> concept pair-like-convertible-from = // exposition only !range<T> && !is_reference_v<T> && pair-like<T> && constructible_from<T, U, V> && convertible-to-non-slicing<U, tuple_element_t<0, T>> && convertible_to<V, tuple_element_t<1, T>>; template<input_or_output_iterator I, sentinel_for<I> S = I, subrange_kind K = sized_sentinel_for<S, I> ? subrange_kind::sized : subrange_kind::unsized> requires (K == subrange_kind::sized || !sized_sentinel_for<S, I>) class subrange : public view_interface<subrange<I, S, K>> { private: static constexpr bool StoreSize = // exposition only K == subrange_kind::sized && !sized_sentinel_for<S, I>; I begin_ = I(); // exposition only S end_ = S(); // exposition only make-unsigned-like-t<iter_difference_t<I>> size_ = 0; // exposition only; present only // if StoreSize is true public: subrange() requires default_initializable<I> = default; constexpr subrange(convertible-to-non-slicing<I> auto i, S s) requires (!StoreSize); constexpr subrange(convertible-to-non-slicing<I> auto i, S s, make-unsigned-like-t<iter_difference_t<I>> n) requires (K == subrange_kind::sized); template<different-from<subrange> R> requires borrowed_range<R> && convertible-to-non-slicing<iterator_t<R>, I> && convertible_to<sentinel_t<R>, S> constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>); template<borrowed_range R> requires convertible-to-non-slicing<iterator_t<R>, I> && convertible_to<sentinel_t<R>, S> constexpr subrange(R&& r, make-unsigned-like-t<iter_difference_t<I>> n) requires (K == subrange_kind::sized) : subrange{ranges::begin(r), ranges::end(r), n} {} template<different-from<subrange> PairLike> requires pair-like-convertible-from<PairLike, const I&, const S&> constexpr operator PairLike() const; constexpr I begin() const requires copyable<I>; constexpr I begin() requires (!copyable<I>); constexpr S end() const; constexpr bool empty() const; constexpr make-unsigned-like-t<iter_difference_t<I>> size() const requires (K == subrange_kind::sized); constexpr subrange next(iter_difference_t<I> n = 1) const & requires forward_iterator<I>; constexpr subrange next(iter_difference_t<I> n = 1) &&; constexpr subrange prev(iter_difference_t<I> n = 1) const requires bidirectional_iterator<I>; constexpr subrange& advance(iter_difference_t<I> n); }; template<input_or_output_iterator I, sentinel_for<I> S> subrange(I, S) -> subrange<I, S>; template<input_or_output_iterator I, sentinel_for<I> S> subrange(I, S, make-unsigned-like-t<iter_difference_t<I>>) -> subrange<I, S, subrange_kind::sized>; template<borrowed_range R> subrange(R&&) -> subrange<iterator_t<R>, sentinel_t<R>, (sized_range<R> || sized_sentinel_for<sentinel_t<R>, iterator_t<R>>) ? subrange_kind::sized : subrange_kind::unsized>; template<borrowed_range R> subrange(R&&, make-unsigned-like-t<range_difference_t<R>>) -> subrange<iterator_t<R>, sentinel_t<R>, subrange_kind::sized>; }

25.5.4.2 Constructors and conversions [range.subrange.ctor]

constexpr subrange(convertible-to-non-slicing<I> auto i, S s) requires (!StoreSize);
Preconditions: [i, s) is a valid range.
Effects: Initializes begin_ with std​::​move(i) and end_ with s.
constexpr subrange(convertible-to-non-slicing<I> auto i, S s, make-unsigned-like-t<iter_difference_t<I>> n) requires (K == subrange_kind::sized);
Preconditions: [i, s) is a valid range, and n == to-unsigned-like(ranges​::​distance(i, s)) is true.
Effects: Initializes begin_ with std​::​move(i) and end_ with s.
If StoreSize is true, initializes size_ with n.
[Note 1: 
Accepting the length of the range and storing it to later return from size() enables subrange to model sized_range even when it stores an iterator and sentinel that do not model sized_sentinel_for.
— end note]
template<different-from<subrange> R> requires borrowed_range<R> && convertible-to-non-slicing<iterator_t<R>, I> && convertible_to<sentinel_t<R>, S> constexpr subrange(R&& r) requires (!StoreSize || sized_range<R>);
Effects: Equivalent to:
  • If StoreSize is true, subrange(r, static_cast<decltype(size_)>(ranges​::​size(r))).
  • Otherwise, subrange(ranges​::​begin(r), ranges​::​end(r)).
template<different-from<subrange> PairLike> requires pair-like-convertible-from<PairLike, const I&, const S&> constexpr operator PairLike() const;
Effects: Equivalent to: return PairLike(begin_, end_);

25.5.4.3 Accessors [range.subrange.access]

constexpr I begin() const requires copyable<I>;
Effects: Equivalent to: return begin_;
constexpr I begin() requires (!copyable<I>);
Effects: Equivalent to: return std​::​move(begin_);
constexpr S end() const;
Effects: Equivalent to: return end_;
constexpr bool empty() const;
Effects: Equivalent to: return begin_ == end_;
constexpr make-unsigned-like-t<iter_difference_t<I>> size() const requires (K == subrange_kind::sized);
Effects:
  • If StoreSize is true, equivalent to: return size_;
  • Otherwise, equivalent to: return to-unsigned-like(end_ - begin_);
constexpr subrange next(iter_difference_t<I> n = 1) const & requires forward_iterator<I>;
Effects: Equivalent to: auto tmp = *this; tmp.advance(n); return tmp;
constexpr subrange next(iter_difference_t<I> n = 1) &&;
Effects: Equivalent to: advance(n); return std::move(*this);
constexpr subrange prev(iter_difference_t<I> n = 1) const requires bidirectional_iterator<I>;
Effects: Equivalent to: auto tmp = *this; tmp.advance(-n); return tmp;
constexpr subrange& advance(iter_difference_t<I> n);
Effects: Equivalent to: if constexpr (bidirectional_iterator<I>) { if (n < 0) { ranges::advance(begin_, n); if constexpr (StoreSize) size_ += to-unsigned-like(-n); return *this; } } auto d = n - ranges::advance(begin_, n, end_); if constexpr (StoreSize) size_ -= to-unsigned-like(d); return *this;
template<size_t N, class I, class S, subrange_kind K> requires ((N == 0 && copyable<I>) || N == 1) constexpr auto get(const subrange<I, S, K>& r); template<size_t N, class I, class S, subrange_kind K> requires (N < 2) constexpr auto get(subrange<I, S, K>&& r);
Effects: Equivalent to: if constexpr (N == 0) return r.begin(); else return r.end();

25.5.5 Dangling iterator handling [range.dangling]

The type dangling is used together with the template aliases borrowed_iterator_t and borrowed_subrange_t.
When an algorithm that typically returns an iterator into, or a subrange of, a range argument is called with an rvalue range argument that does not model borrowed_range ([range.range]), the return value possibly refers to a range whose lifetime has ended.
In such cases, the type dangling is returned instead of an iterator or subrange.
namespace std::ranges { struct dangling { constexpr dangling() noexcept = default; constexpr dangling(auto&&...) noexcept {} }; }
[Example 1: vector<int> f(); auto result1 = ranges::find(f(), 42); // #1 static_assert(same_as<decltype(result1), ranges::dangling>); auto vec = f(); auto result2 = ranges::find(vec, 42); // #2 static_assert(same_as<decltype(result2), vector<int>::iterator>); auto result3 = ranges::find(ranges::subrange{vec}, 42); // #3 static_assert(same_as<decltype(result3), vector<int>::iterator>);
The call to ranges​::​find at #1 returns ranges​::​dangling since f() is an rvalue vector; it is possible for the vector to be destroyed before a returned iterator is dereferenced.
However, the calls at #2 and #3 both return iterators since the lvalue vec and specializations of subrange model borrowed_range.
— end example]
For a type R that models range:
  • if R models borrowed_range, then borrowed_iterator_t<R> denotes iterator_t<R>, and borrowed_subrange_t<R> denotes subrange<iterator_t<R>>;
  • otherwise, both borrowed_iterator_t<R> and borrowed_subrange_t<R> denote dangling.

25.5.6 Class template elements_of [range.elementsof]

Specializations of elements_of encapsulate a range and act as a tag in overload sets to disambiguate when a range should be treated as a sequence rather than a single value.
[Example 1: template<bool YieldElements> generator<any> f(ranges::input_range auto&& r) { if constexpr (YieldElements) co_yield ranges::elements_of(r); // yield each element of r else co_yield r; // yield r as a single value } — end example]
namespace std::ranges { template<range R, class Allocator = allocator<byte>> struct elements_of { [[no_unique_address]] R range; [[no_unique_address]] Allocator allocator = Allocator(); }; template<class R, class Allocator = allocator<byte>> elements_of(R&&, Allocator = Allocator()) -> elements_of<R&&, Allocator>; }

25.5.7 Range conversions [range.utility.conv]

25.5.7.1 General [range.utility.conv.general]

The range conversion functions construct an object (usually a container) from a range, by using a constructor taking a range, a from_range_t tagged constructor, or a constructor taking a pair of iterators, or by inserting each element of the range into the default-constructed object.
ranges​::​to is applied recursively, allowing the conversion of a range of ranges.
[Example 1: string_view str = "the quick brown fox"; auto words = views::split(str, ' ') | to<vector<string>>(); // words is vector<string>{"the", "quick", "brown", "fox"} — end example]
Let reservable-container be defined as follows: template<class Container> constexpr bool reservable-container = // exposition only sized_range<Container> && requires(Container& c, range_size_t<Container> n) { c.reserve(n); { c.capacity() } -> same_as<decltype(n)>; { c.max_size() } -> same_as<decltype(n)>; };
Let container-appendable be defined as follows: template<class Container, class Ref> constexpr bool container-appendable = // exposition only requires(Container& c, Ref&& ref) { requires (requires { c.emplace_back(std::forward<Ref>(ref)); } || requires { c.push_back(std::forward<Ref>(ref)); } || requires { c.emplace(c.end(), std::forward<Ref>(ref)); } || requires { c.insert(c.end(), std::forward<Ref>(ref)); }); };
Let container-append be defined as follows: template<class Container> constexpr auto container-append(Container& c) { // exposition only return [&c]<class Ref>(Ref&& ref) { if constexpr (requires { c.emplace_back(declval<Ref>()); }) c.emplace_back(std::forward<Ref>(ref)); else if constexpr (requires { c.push_back(declval<Ref>()); }) c.push_back(std::forward<Ref>(ref)); else if constexpr (requires { c.emplace(c.end(), declval<Ref>()); }) c.emplace(c.end(), std::forward<Ref>(ref)); else c.insert(c.end(), std::forward<Ref>(ref)); }; }

25.5.7.2 ranges​::​to [range.utility.conv.to]

template<class C, input_range R, class... Args> requires (!view<C>) constexpr C to(R&& r, Args&&... args);
Mandates: C is a cv-unqualified class type.
Returns: An object of type C constructed from the elements of r in the following manner:
  • If C does not satisfy input_range or convertible_to<range_reference_t<R>, range_value_t<C>> is true:
  • Otherwise, if input_range<range_reference_t<R>> is true: to<C>(ref_view(r) | views::transform([](auto&& elem) { return to<range_value_t<C>>(std::forward<decltype(elem)>(elem)); }), std::forward<Args>(args)...);
  • Otherwise, the program is ill-formed.
template<template<class...> class C, input_range R, class... Args> constexpr auto to(R&& r, Args&&... args);
Let input-iterator be an exposition-only type: struct input-iterator { // exposition only using iterator_category = input_iterator_tag; using value_type = range_value_t<R>; using difference_type = ptrdiff_t; using pointer = add_pointer_t<range_reference_t<R>>; using reference = range_reference_t<R>; reference operator*() const; pointer operator->() const; input-iterator& operator++(); input-iterator operator++(int); bool operator==(const input-iterator&) const; };
[Note 1: 
input-iterator meets the syntactic requirements of Cpp17InputIterator.
— end note]
Let DEDUCE_EXPR be defined as follows:
  • C(declval<R>(), declval<Args>()...) if that is a valid expression,
  • otherwise, C(from_range, declval<R>(), declval<Args>()...) if that is a valid expression,
  • otherwise, C(declval<input-iterator>(), declval<input-iterator>(), declval<Args>()...) if that is a valid expression,
  • otherwise, the program is ill-formed.
Returns: to<decltype(DEDUCE_EXPR)>(std​::​forward<R>(r), std​::​forward<Args>(args)...).

25.5.7.3 ranges​::​to adaptors [range.utility.conv.adaptors]

template<class C, class... Args> requires (!view<C>) constexpr auto to(Args&&... args); template<template<class...> class C, class... Args> constexpr auto to(Args&&... args);
Mandates: For the first overload, C is a cv-unqualified class type.
Returns: A range adaptor closure object ([range.adaptor.object]) f that is a perfect forwarding call wrapper ([func.require]) with the following properties:
  • It has no target object.
  • Its bound argument entities bound_args consist of objects of types decay_t<Args>... direct-non-list-initialized with std​::​forward<Args>(args)..., respectively.
  • Its call pattern is to<C>(r, bound_args...), where r is the argument used in a function call expression of f.

25.6 Range factories [range.factories]

25.6.1 General [range.factories.general]

Subclause [range.factories] defines range factories, which are utilities to create a view.
Range factories are declared in namespace std​::​ranges​::​views.

25.6.2 Empty view [range.empty]

25.6.2.1 Overview [range.empty.overview]

empty_view produces a view of no elements of a particular type.
[Example 1: auto e = views::empty<int>; static_assert(ranges::empty(e)); static_assert(0 == e.size()); — end example]

25.6.2.2 Class template empty_view [range.empty.view]

namespace std::ranges { template<class T> requires is_object_v<T> class empty_view : public view_interface<empty_view<T>> { public: static constexpr T* begin() noexcept { return nullptr; } static constexpr T* end() noexcept { return nullptr; } static constexpr T* data() noexcept { return nullptr; } static constexpr size_t size() noexcept { return 0; } static constexpr bool empty() noexcept { return true; } }; }

25.6.3 Single view [range.single]

25.6.3.1 Overview [range.single.overview]

single_view produces a view that contains exactly one element of a specified value.
The name views​::​single denotes a customization point object ([customization.point.object]).
Given a subexpression E, the expression views​::​single(E) is expression-equivalent to single_view<decay_t<decltype((E))>>(E).
[Example 1: for (int i : views::single(4)) cout << i; // prints 4 — end example]

25.6.3.2 Class template single_view [range.single.view]

namespace std::ranges { template<move_constructible T> requires is_object_v<T> class single_view : public view_interface<single_view<T>> { private: movable-box<T> value_; // exposition only (see [range.move.wrap]) public: single_view() requires default_initializable<T> = default; constexpr explicit single_view(const T& t) requires copy_constructible<T>; constexpr explicit single_view(T&& t); template<class... Args> requires constructible_from<T, Args...> constexpr explicit single_view(in_place_t, Args&&... args); constexpr T* begin() noexcept; constexpr const T* begin() const noexcept; constexpr T* end() noexcept; constexpr const T* end() const noexcept; static constexpr bool empty() noexcept; static constexpr size_t size() noexcept; constexpr T* data() noexcept; constexpr const T* data() const noexcept; }; template<class T> single_view(T) -> single_view<T>; }
constexpr explicit single_view(const T& t) requires copy_constructible<T>;
Effects: Initializes value_ with t.
constexpr explicit single_view(T&& t);
Effects: Initializes value_ with std​::​move(t).
template<class... Args> requires constructible_from<T, Args...> constexpr explicit single_view(in_place_t, Args&&... args);
Effects: Initializes value_ as if by value_{in_place, std​::​forward<Args>(args)...}.
constexpr T* begin() noexcept; constexpr const T* begin() const noexcept;
Effects: Equivalent to: return data();
constexpr T* end() noexcept; constexpr const T* end() const noexcept;
Effects: Equivalent to: return data() + 1;
static constexpr bool empty() noexcept;
Effects: Equivalent to: return false;
static constexpr size_t size() noexcept;
Effects: Equivalent to: return 1;
constexpr T* data() noexcept; constexpr const T* data() const noexcept;
Effects: Equivalent to: return value_.operator->();

25.6.4 Iota view [range.iota]

25.6.4.1 Overview [range.iota.overview]

iota_view generates a sequence of elements by repeatedly incrementing an initial value.
The name views​::​iota denotes a customization point object ([customization.point.object]).
Given subexpressions E and F, the expressions views​::​iota(E) and views​::​iota(E, F) are expression-equivalent to iota_view<decay_t<decltype((E))>>(E) and iota_view(E, F), respectively.
[Example 1: for (int i : views::iota(1, 10)) cout << i << ' '; // prints 1 2 3 4 5 6 7 8 9 — end example]

25.6.4.2 Class template iota_view [range.iota.view]

namespace std::ranges { template<class I> concept decrementable = see below; // exposition only template<class I> concept advanceable = see below; // exposition only template<weakly_incrementable W, semiregular Bound = unreachable_sentinel_t> requires weakly-equality-comparable-with<W, Bound> && copyable<W> class iota_view : public view_interface<iota_view<W, Bound>> { private: // [range.iota.iterator], class iota_view​::​iterator struct iterator; // exposition only // [range.iota.sentinel], class iota_view​::​sentinel struct sentinel; // exposition only W value_ = W(); // exposition only Bound bound_ = Bound(); // exposition only public: iota_view() requires default_initializable<W> = default; constexpr explicit iota_view(W value); constexpr explicit iota_view(type_identity_t<W> value, type_identity_t<Bound> bound); constexpr explicit iota_view(iterator first, see below last); constexpr iterator begin() const; constexpr auto end() const; constexpr iterator end() const requires same_as<W, Bound>; constexpr bool empty() const; constexpr auto size() const requires see below; }; template<class W, class Bound> requires (!is-integer-like<W> || !is-integer-like<Bound> || (is-signed-integer-like<W> == is-signed-integer-like<Bound>)) iota_view(W, Bound) -> iota_view<W, Bound>; }
Let IOTA-DIFF-T(W) be defined as follows:
  • If W is not an integral type, or if it is an integral type and sizeof(iter_difference_t<W>) is greater than sizeof(W), then IOTA-DIFF-T(W) denotes iter_difference_t<W>.
  • Otherwise, IOTA-DIFF-T(W) is a signed integer type of width greater than the width of W if such a type exists.
  • Otherwise, IOTA-DIFF-T(W) is an unspecified signed-integer-like type ([iterator.concept.winc]) of width not less than the width of W.
    [Note 1: 
    It is unspecified whether this type satisfies weakly_incrementable.
    — end note]
The exposition-only decrementable concept is equivalent to:
template<class I> concept decrementable = // exposition only incrementable<I> && requires(I i) { { --i } -> same_as<I&>; { i-- } -> same_as<I>; };
When an object is in the domain of both pre- and post-decrement, the object is said to be decrementable.
Let a and b be equal objects of type I.
I models decrementable only if
  • If a and b are decrementable, then the following are all true:
  • If a and b are incrementable, then bool(--(++a) == b).
The exposition-only advanceable concept is equivalent to:
template<class I> concept advanceable = // exposition only decrementable<I> && totally_ordered<I> && requires(I i, const I j, const IOTA-DIFF-T(I) n) { { i += n } -> same_as<I&>; { i -= n } -> same_as<I&>; I(j + n); I(n + j); I(j - n); { j - j } -> convertible_to<IOTA-DIFF-T(I)>; };
Let D be IOTA-DIFF-T(I).
Let a and b be objects of type I such that b is reachable from a after n applications of ++a, for some value n of type D.
I models advanceable only if
  • (a += n) is equal to b.
  • addressof(a += n) is equal to addressof(a).
  • I(a + n) is equal to (a += n).
  • For any two positive values x and y of type D, if I(a + D(x + y)) is well-defined, then I(a + D(x + y)) is equal to I(I(a + x) + y).
  • I(a + D(0)) is equal to a.
  • If I(a + D(n - 1)) is well-defined, then I(a + n) is equal to [](I c) { return ++c; }(I(a + D(n - 1))).
  • (b += -n) is equal to a.
  • (b -= n) is equal to a.
  • addressof(b -= n) is equal to addressof(b).
  • I(b - n) is equal to (b -= n).
  • D(b - a) is equal to n.
  • D(a - b) is equal to D(-n).
  • bool(a <= b) is true.
constexpr explicit iota_view(W value);
Preconditions: Bound denotes unreachable_sentinel_t or Bound() is reachable from value.
When W and Bound model totally_ordered_with, then bool(value <= Bound()) is true.
Effects: Initializes value_ with value.
constexpr explicit iota_view(type_identity_t<W> value, type_identity_t<Bound> bound);
Preconditions: Bound denotes unreachable_sentinel_t or bound is reachable from value.
When W and Bound model totally_ordered_with, then bool(value <= bound) is true.
Effects: Initializes value_ with value and bound_ with bound.
constexpr explicit iota_view(iterator first, see below last);
Effects: Equivalent to:
  • If same_as<W, Bound> is true, iota_view(first.value_, last.value_).
  • Otherwise, if Bound denotes unreachable_sentinel_t, iota_view(first.value_, last).
  • Otherwise, iota_view(first.value_, last.bound_).
Remarks: The type of last is:
constexpr iterator begin() const;
Effects: Equivalent to: return iterator{value_};
constexpr auto end() const;
Effects: Equivalent to: if constexpr (same_as<Bound, unreachable_sentinel_t>) return unreachable_sentinel; else return sentinel{bound_};
constexpr iterator end() const requires same_as<W, Bound>;
Effects: Equivalent to: return iterator{bound_};
constexpr bool empty() const;
Effects: Equivalent to: return value_ == bound_;
constexpr auto size() const requires see below;
Effects: Equivalent to: if constexpr (is-integer-like<W> && is-integer-like<Bound>) return (value_ < 0) ? ((bound_ < 0) ? to-unsigned-like(-value_) - to-unsigned-like(-bound_) : to-unsigned-like(bound_) + to-unsigned-like(-value_)) : to-unsigned-like(bound_) - to-unsigned-like(value_); else return to-unsigned-like(bound_ - value_);
Remarks: The expression in the requires-clause is equivalent to: (same_as<W, Bound> && advanceable<W>) || (is-integer-like<W> && is-integer-like<Bound>) || sized_sentinel_for<Bound, W>

25.6.4.3 Class iota_view​::​iterator [range.iota.iterator]

namespace std::ranges { template<weakly_incrementable W, semiregular Bound> requires weakly-equality-comparable-with<W, Bound> && copyable<W> struct iota_view<W, Bound>::iterator { private: W value_ = W(); // exposition only public: using iterator_concept = see below; using iterator_category = input_iterator_tag; // present only if W models incrementable and // IOTA-DIFF-T(W) is an integral type using value_type = W; using difference_type = IOTA-DIFF-T(W); iterator() requires default_initializable<W> = default; constexpr explicit iterator(W value); constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>); constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires incrementable<W>; constexpr iterator& operator--() requires decrementable<W>; constexpr iterator operator--(int) requires decrementable<W>; constexpr iterator& operator+=(difference_type n) requires advanceable<W>; constexpr iterator& operator-=(difference_type n) requires advanceable<W>; constexpr W operator[](difference_type n) const requires advanceable<W>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<W>; friend constexpr bool operator<(const iterator& x, const iterator& y) requires totally_ordered<W>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires totally_ordered<W>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires totally_ordered<W>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires totally_ordered<W>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires totally_ordered<W> && three_way_comparable<W>; friend constexpr iterator operator+(iterator i, difference_type n) requires advanceable<W>; friend constexpr iterator operator+(difference_type n, iterator i) requires advanceable<W>; friend constexpr iterator operator-(iterator i, difference_type n) requires advanceable<W>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires advanceable<W>; }; }
iterator​::​iterator_concept is defined as follows:
  • If W models advanceable, then iterator_concept is random_access_iterator_tag.
  • Otherwise, if W models decrementable, then iterator_concept is bidirectional_iterator_tag.
  • Otherwise, if W models incrementable, then iterator_concept is forward_iterator_tag.
  • Otherwise, iterator_concept is input_iterator_tag.
[Note 1: 
Overloads for iter_move and iter_swap are omitted intentionally.
— end note]
constexpr explicit iterator(W value);
Effects: Initializes value_ with value.
constexpr W operator*() const noexcept(is_nothrow_copy_constructible_v<W>);
Effects: Equivalent to: return value_;
[Note 2: 
The noexcept clause is needed by the default iter_move implementation.
— end note]
constexpr iterator& operator++();
Effects: Equivalent to: ++value_; return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires incrementable<W>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires decrementable<W>;
Effects: Equivalent to: --value_; return *this;
constexpr iterator operator--(int) requires decrementable<W>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type n) requires advanceable<W>;
Effects: Equivalent to: if constexpr (is-integer-like<W> && !is-signed-integer-like<W>) { if (n >= difference_type(0)) value_ += static_cast<W>(n); else value_ -= static_cast<W>(-n); } else { value_ += n; } return *this;
constexpr iterator& operator-=(difference_type n) requires advanceable<W>;
Effects: Equivalent to: if constexpr (is-integer-like<W> && !is-signed-integer-like<W>) { if (n >= difference_type(0)) value_ -= static_cast<W>(n); else value_ += static_cast<W>(-n); } else { value_ -= n; } return *this;
constexpr W operator[](difference_type n) const requires advanceable<W>;
Effects: Equivalent to: return W(value_ + n);
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<W>;
Effects: Equivalent to: return x.value_ == y.value_;
friend constexpr bool operator<(const iterator& x, const iterator& y) requires totally_ordered<W>;
Effects: Equivalent to: return x.value_ < y.value_;
friend constexpr bool operator>(const iterator& x, const iterator& y) requires totally_ordered<W>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires totally_ordered<W>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires totally_ordered<W>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires totally_ordered<W> && three_way_comparable<W>;
Effects: Equivalent to: return x.value_ <=> y.value_;
friend constexpr iterator operator+(iterator i, difference_type n) requires advanceable<W>;
Effects: Equivalent to: i += n; return i;
friend constexpr iterator operator+(difference_type n, iterator i) requires advanceable<W>;
Effects: Equivalent to: return i + n;
friend constexpr iterator operator-(iterator i, difference_type n) requires advanceable<W>;
Effects: Equivalent to: i -= n; return i;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires advanceable<W>;
Effects: Equivalent to: using D = difference_type; if constexpr (is-integer-like<W>) { if constexpr (is-signed-integer-like<W>) return D(D(x.value_) - D(y.value_)); else return (y.value_ > x.value_) ? D(-D(y.value_ - x.value_)) : D(x.value_ - y.value_); } else { return x.value_ - y.value_; }

25.6.4.4 Class iota_view​::​sentinel [range.iota.sentinel]

namespace std::ranges { template<weakly_incrementable W, semiregular Bound> requires weakly-equality-comparable-with<W, Bound> && copyable<W> struct iota_view<W, Bound>::sentinel { private: Bound bound_ = Bound(); // exposition only public: sentinel() = default; constexpr explicit sentinel(Bound bound); friend constexpr bool operator==(const iterator& x, const sentinel& y); friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y) requires sized_sentinel_for<Bound, W>; friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y) requires sized_sentinel_for<Bound, W>; }; }
constexpr explicit sentinel(Bound bound);
Effects: Initializes bound_ with bound.
friend constexpr bool operator==(const iterator& x, const sentinel& y);
Effects: Equivalent to: return x.value_ == y.bound_;
friend constexpr iter_difference_t<W> operator-(const iterator& x, const sentinel& y) requires sized_sentinel_for<Bound, W>;
Effects: Equivalent to: return x.value_ - y.bound_;
friend constexpr iter_difference_t<W> operator-(const sentinel& x, const iterator& y) requires sized_sentinel_for<Bound, W>;
Effects: Equivalent to: return -(y - x);

25.6.5 Repeat view [range.repeat]

25.6.5.1 Overview [range.repeat.overview]

repeat_view generates a sequence of elements by repeatedly producing the same value.
The name views​::​repeat denotes a customization point object ([customization.point.object]).
Given subexpressions E and F, the expressions views​::​repeat(E) and views​::​repeat(E, F) are expression-equivalent to repeat_view<decay_t<decltype((E))>>(E) and repeat_view(E, F), respectively.
[Example 1: for (int i : views::repeat(17, 4)) cout << i << ' '; // prints 17 17 17 17 — end example]

25.6.5.2 Class template repeat_view [range.repeat.view]

namespace std::ranges { template<class T> concept integer-like-with-usable-difference-type = // exposition only is-signed-integer-like<T> || (is-integer-like<T> && weakly_incrementable<T>); template<move_constructible T, semiregular Bound = unreachable_sentinel_t> requires (is_object_v<T> && same_as<T, remove_cv_t<T>> && (integer-like-with-usable-difference-type<Bound> || same_as<Bound, unreachable_sentinel_t>)) class repeat_view : public view_interface<repeat_view<T, Bound>> { private: // [range.repeat.iterator], class repeat_view​::​iterator struct iterator; // exposition only movable-box<T> value_; // exposition only, see [range.move.wrap] Bound bound_ = Bound(); // exposition only public: repeat_view() requires default_initializable<T> = default; constexpr explicit repeat_view(const T& value, Bound bound = Bound()) requires copy_constructible<T>; constexpr explicit repeat_view(T&& value, Bound bound = Bound()); template<class... TArgs, class... BoundArgs> requires constructible_from<T, TArgs...> && constructible_from<Bound, BoundArgs...> constexpr explicit repeat_view(piecewise_construct_t, tuple<TArgs...> value_args, tuple<BoundArgs...> bound_args = tuple<>{}); constexpr iterator begin() const; constexpr iterator end() const requires (!same_as<Bound, unreachable_sentinel_t>); constexpr unreachable_sentinel_t end() const noexcept; constexpr auto size() const requires (!same_as<Bound, unreachable_sentinel_t>); }; template<class T, class Bound = unreachable_sentinel_t> repeat_view(T, Bound = Bound()) -> repeat_view<T, Bound>; }
constexpr explicit repeat_view(const T& value, Bound bound = Bound()) requires copy_constructible<T>;
Preconditions: If Bound is not unreachable_sentinel_t, bound  ≥ 0.
Effects: Initializes value_ with value and bound_ with bound.
constexpr explicit repeat_view(T&& value, Bound bound = Bound());
Preconditions: If Bound is not unreachable_sentinel_t, bound  ≥ 0.
Effects: Initializes value_ with std​::​move(value) and bound_ with bound.
template<class... TArgs, class... BoundArgs> requires constructible_from<T, TArgs...> && constructible_from<Bound, BoundArgs...> constexpr explicit repeat_view(piecewise_construct_t, tuple<TArgs...> value_args, tuple<BoundArgs...> bound_args = tuple<>{});
Effects: Initializes value_ with make_from_tuple<T>(std​::​move(value_args)) and initializes bound_ with make_from_tuple<Bound>(std​::​move(bound_args)).
The behavior is undefined if Bound is not unreachable_sentinel_t and bound_ is negative.
constexpr iterator begin() const;
Effects: Equivalent to: return iterator(addressof(*value_));
constexpr iterator end() const requires (!same_as<Bound, unreachable_sentinel_t>);
Effects: Equivalent to: return iterator(addressof(*value_), bound_);
constexpr unreachable_sentinel_t end() const noexcept;
Effects: Equivalent to: return unreachable_sentinel;
constexpr auto size() const requires (!same_as<Bound, unreachable_sentinel_t>);
Effects: Equivalent to: return to-unsigned-like(bound_);

25.6.5.3 Class repeat_view​::​iterator [range.repeat.iterator]

namespace std::ranges { template<move_constructible T, semiregular Bound> requires (is_object_v<T> && same_as<T, remove_cv_t<T>> && (integer-like-with-usable-difference-type<Bound> || same_as<Bound, unreachable_sentinel_t>)) class repeat_view<T, Bound>::iterator { private: using index-type = // exposition only conditional_t<same_as<Bound, unreachable_sentinel_t>, ptrdiff_t, Bound>; const T* value_ = nullptr; // exposition only index-type current_ = index-type(); // exposition only constexpr explicit iterator(const T* value, index-type b = index-type()); // exposition only public: using iterator_concept = random_access_iterator_tag; using iterator_category = random_access_iterator_tag; using value_type = T; using difference_type = see below; iterator() = default; constexpr const T& operator*() const noexcept; constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--(); constexpr iterator operator--(int); constexpr iterator& operator+=(difference_type n); constexpr iterator& operator-=(difference_type n); constexpr const T& operator[](difference_type n) const noexcept; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr auto operator<=>(const iterator& x, const iterator& y); friend constexpr iterator operator+(iterator i, difference_type n); friend constexpr iterator operator+(difference_type n, iterator i); friend constexpr iterator operator-(iterator i, difference_type n); friend constexpr difference_type operator-(const iterator& x, const iterator& y); }; }
If is-signed-integer-like<index-type> is true, the member typedef-name difference_type denotes index-type.
Otherwise, it denotes IOTA-DIFF-T(index-type) ([range.iota.view]).
constexpr explicit iterator(const T* value, index-type b = index-type());
Preconditions: If Bound is not unreachable_sentinel_t, b  ≥ 0.
Effects: Initializes value_ with value and current_ with b.
constexpr const T& operator*() const noexcept;
Effects: Equivalent to: return *value_;
constexpr iterator& operator++();
Effects: Equivalent to: ++current_; return *this;
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--();
Preconditions: If Bound is not unreachable_sentinel_t, .
Effects: Equivalent to: --current_; return *this;
constexpr iterator operator--(int);
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type n);
Preconditions: If Bound is not unreachable_sentinel_t, .
Effects: Equivalent to: current_ += n; return *this;
constexpr iterator& operator-=(difference_type n);
Preconditions: If Bound is not unreachable_sentinel_t, .
Effects: Equivalent to: current_ -= n; return *this;
constexpr const T& operator[](difference_type n) const noexcept;
Effects: Equivalent to: return *(*this + n);
friend constexpr bool operator==(const iterator& x, const iterator& y);
Effects: Equivalent to: return x.current_ == y.current_;
friend constexpr auto operator<=>(const iterator& x, const iterator& y);
Effects: Equivalent to: return x.current_ <=> y.current_;
friend constexpr iterator operator+(iterator i, difference_type n); friend constexpr iterator operator+(difference_type n, iterator i);
Effects: Equivalent to: i += n; return i;
friend constexpr iterator operator-(iterator i, difference_type n);
Effects: Equivalent to: i -= n; return i;
friend constexpr difference_type operator-(const iterator& x, const iterator& y);
Effects: Equivalent to: return static_cast<difference_type>(x.current_) - static_cast<difference_type>(y.current_);

25.6.6 Istream view [range.istream]

25.6.6.1 Overview [range.istream.overview]

basic_istream_view models input_range and reads (using operator>>) successive elements from its corresponding input stream.
The name views​::​istream<T> denotes a customization point object ([customization.point.object]).
Given a type T and a subexpression E of type U, if U models derived_from<basic_istream<typename U​::​char_type, typename U​::​traits_type>>, then the expression views​::​istream<T>(E) is expression-equivalent to basic_istream_view<T, typename U​::​char_type, typename U​::​traits_type>(E); otherwise, views​::​istream<T>(E) is ill-formed.
[Example 1: auto ints = istringstream{"0 1 2 3 4"}; ranges::copy(views::istream<int>(ints), ostream_iterator<int>{cout, "-"}); // prints 0-1-2-3-4- — end example]

25.6.6.2 Class template basic_istream_view [range.istream.view]

namespace std::ranges { template<class Val, class CharT, class Traits> concept stream-extractable = // exposition only requires(basic_istream<CharT, Traits>& is, Val& t) { is >> t; }; template<movable Val, class CharT, class Traits = char_traits<CharT>> requires default_initializable<Val> && stream-extractable<Val, CharT, Traits> class basic_istream_view : public view_interface<basic_istream_view<Val, CharT, Traits>> { public: constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream); constexpr auto begin() { *stream_ >> value_; return iterator{*this}; } constexpr default_sentinel_t end() const noexcept; private: // [range.istream.iterator], class basic_istream_view​::​iterator struct iterator; // exposition only basic_istream<CharT, Traits>* stream_; // exposition only Val value_ = Val(); // exposition only }; }
constexpr explicit basic_istream_view(basic_istream<CharT, Traits>& stream);
Effects: Initializes stream_ with addressof(stream).
constexpr default_sentinel_t end() const noexcept;
Effects: Equivalent to: return default_sentinel;

25.6.6.3 Class basic_istream_view​::​iterator [range.istream.iterator]

namespace std::ranges { template<movable Val, class CharT, class Traits> requires default_initializable<Val> && stream-extractable<Val, CharT, Traits> class basic_istream_view<Val, CharT, Traits>::iterator { public: using iterator_concept = input_iterator_tag; using difference_type = ptrdiff_t; using value_type = Val; constexpr explicit iterator(basic_istream_view& parent) noexcept; iterator(const iterator&) = delete; iterator(iterator&&) = default; iterator& operator=(const iterator&) = delete; iterator& operator=(iterator&&) = default; iterator& operator++(); void operator++(int); Val& operator*() const; friend bool operator==(const iterator& x, default_sentinel_t); private: basic_istream_view* parent_; // exposition only }; }
constexpr explicit iterator(basic_istream_view& parent) noexcept;
Effects: Initializes parent_ with addressof(parent).
iterator& operator++();
Effects: Equivalent to: *parent_->stream_ >> parent_->value_; return *this;
void operator++(int);
Effects: Equivalent to ++*this.
Val& operator*() const;
Effects: Equivalent to: return parent_->value_;
friend bool operator==(const iterator& x, default_sentinel_t);
Effects: Equivalent to: return !*x.parent_->stream_;

25.7 Range adaptors [range.adaptors]

25.7.1 General [range.adaptors.general]

Subclause [range.adaptors] defines range adaptors, which are utilities that transform a range into a view with custom behaviors.
These adaptors can be chained to create pipelines of range transformations that evaluate lazily as the resulting view is iterated.
Range adaptors are declared in namespace std​::​ranges​::​views.
The bitwise or operator is overloaded for the purpose of creating adaptor chain pipelines.
The adaptors also support function call syntax with equivalent semantics.
[Example 1: vector<int> ints{0,1,2,3,4,5}; auto even = [](int i) { return 0 == i % 2; }; auto square = [](int i) { return i * i; }; for (int i : ints | views::filter(even) | views::transform(square)) { cout << i << ' '; // prints 0 4 16 } assert(ranges::equal(ints | views::filter(even), views::filter(ints, even))); — end example]

25.7.2 Range adaptor objects [range.adaptor.object]

A range adaptor closure object is a unary function object that accepts a range argument.
For a range adaptor closure object C and an expression R such that decltype((R)) models range, the following expressions are equivalent: C(R) R | C
Given an additional range adaptor closure object D, the expression C | D produces another range adaptor closure object E.
E is a perfect forwarding call wrapper ([func.require]) with the following properties:
  • Its target object is an object d of type decay_t<decltype((D))> direct-non-list-initialized with D.
  • It has one bound argument entity, an object c of type decay_t<decltype((C))> direct-non-list-initialized with C.
  • Its call pattern is d(c(arg)), where arg is the argument used in a function call expression of E.
The expression C | D is well-formed if and only if the initializations of the state entities of E are all well-formed.
Given an object t of type T, where
  • t is a unary function object that accepts a range argument,
  • T models derived_from<range_adaptor_closure<T>>,
  • T has no other base classes of type range_adaptor_closure<U> for any other type U, and
  • T does not model range
then the implementation ensures that t is a range adaptor closure object.
The template parameter D for range_adaptor_closure may be an incomplete type.
If an expression of type cv D is used as an operand to the | operator, D shall be complete and model derived_from<range_adaptor_closure<D>>.
The behavior of an expression involving an object of type cv D as an operand to the | operator is undefined if overload resolution selects a program-defined operator| function.
If an expression of type cv U is used as an operand to the | operator, where U has a base class of type range_adaptor_closure<T> for some type T other than U, the behavior is undefined.
The behavior of a program that adds a specialization for range_adaptor_closure is undefined.
A range adaptor object is a customization point object ([customization.point.object]) that accepts a viewable_range as its first argument and returns a view.
If a range adaptor object accepts only one argument, then it is a range adaptor closure object.
If a range adaptor object adaptor accepts more than one argument, then let range be an expression such that decltype((range)) models viewable_range, let args... be arguments such that adaptor(range, args...) is a well-formed expression as specified in the rest of subclause [range.adaptors], and let BoundArgs be a pack that denotes decay_t<decltype((args))>....
The expression adaptor(args...) produces a range adaptor closure object f that is a perfect forwarding call wrapper ([func.require]) with the following properties:
  • Its target object is a copy of adaptor.
  • Its bound argument entities bound_args consist of objects of types BoundArgs... direct-non-list-initialized with std​::​forward<decltype((args))>(args)..., respectively.
  • Its call pattern is adaptor(r, bound_args...), where r is the argument used in a function call expression of f.
The expression adaptor(args...) is well-formed if and only if the initialization of the bound argument entities of the result, as specified above, are all well-formed.

25.7.3 Movable wrapper [range.move.wrap]

Many types in this subclause are specified in terms of an exposition-only class template movable-box.
movable-box<T> behaves exactly like optional<T> with the following differences:
  • movable-box<T> constrains its type parameter T with move_constructible<T> && is_object_v<T>.
  • The default constructor of movable-box<T> is equivalent to: constexpr movable-box() noexcept(is_nothrow_default_constructible_v<T>) requires default_initializable<T> : movable-box{in_place} {}
  • If copyable<T> is not modeled, the copy assignment operator is equivalent to: constexpr movable-box& operator=(const movable-box& that) noexcept(is_nothrow_copy_constructible_v<T>) requires copy_constructible<T> { if (this != addressof(that)) { if (that) emplace(*that); else reset(); } return *this; }
  • If movable<T> is not modeled, the move assignment operator is equivalent to: constexpr movable-box& operator=(movable-box&& that) noexcept(is_nothrow_move_constructible_v<T>) { if (this != addressof(that)) { if (that) emplace(std::move(*that)); else reset(); } return *this; }
Recommended practice:
  • If copy_constructible<T> is true, movable-box<T> should store only a T if either T models copyable, or is_nothrow_move_constructible_v<T> && is_nothrow_copy_constructible_v<T> is true.
  • Otherwise, movable-box<T> should store only a T if either T models movable or is_nothrow_move_constructible_v<T> is true.

25.7.4 Non-propagating cache [range.nonprop.cache]

Some types in [range.adaptors] are specified in terms of an exposition-only class template non-propagating-​cache.
non-propagating-cache<T> behaves exactly like optional<T> with the following differences:
  • non-propagating-cache<T> constrains its type parameter T with is_object_v<T>.
  • The copy constructor is equivalent to: constexpr non-propagating-cache(const non-propagating-cache&) noexcept {}
  • The move constructor is equivalent to: constexpr non-propagating-cache(non-propagating-cache&& other) noexcept { other.reset(); }
  • The copy assignment operator is equivalent to: constexpr non-propagating-cache& operator=(const non-propagating-cache& other) noexcept { if (addressof(other) != this) reset(); return *this; }
  • The move assignment operator is equivalent to: constexpr non-propagating-cache& operator=(non-propagating-cache&& other) noexcept { reset(); other.reset(); return *this; }
  • non-propagating-cache<T> has an additional member function template specified as follows:
    template<class I> constexpr T& emplace-deref(const I& i); // exposition only
    Mandates: The declaration T t(*i); is well-formed for some invented variable t.
    [Note 1: 
    If *i is a prvalue of type cv T, there is no requirement that it is movable ([dcl.init.general]).
    — end note]
    Effects: Calls reset().
    Then direct-non-list-initializes the contained value with *i.
    Postconditions: *this contains a value.
    Returns: A reference to the new contained value.
    Throws: Any exception thrown by the initialization of the contained value.
    Remarks: If an exception is thrown during the initialization of T, *this does not contain a value, and the previous value (if any) has been destroyed.
[Note 2: 
non-propagating-cache enables an input view to temporarily cache values as it is iterated over.
— end note]

25.7.5 Range adaptor helpers [range.adaptor.helpers]

namespace std::ranges { template<class F, class Tuple> constexpr auto tuple-transform(F&& f, Tuple&& t) { // exposition only return apply([&]<class... Ts>(Ts&&... elements) { return tuple<invoke_result_t<F&, Ts>...>(invoke(f, std::forward<Ts>(elements))...); }, std::forward<Tuple>(t)); } template<class F, class Tuple> constexpr void tuple-for-each(F&& f, Tuple&& t) { // exposition only apply([&]<class... Ts>(Ts&&... elements) { (static_cast<void>(invoke(f, std::forward<Ts>(elements))), ...); }, std::forward<Tuple>(t)); } template<class T> constexpr T& as-lvalue(T&& t) { // exposition only return static_cast<T&>(t); } template<bool Const, class... Views> concept all-random-access = // exposition only (random_access_range<maybe-const<Const, Views>> && ...); template<bool Const, class... Views> concept all-bidirectional = // exposition only (bidirectional_range<maybe-const<Const, Views>> && ...); template<bool Const, class... Views> concept all-forward = // exposition only (forward_range<maybe-const<Const, Views>> && ...); }

25.7.6 All view [range.all]

25.7.6.1 General [range.all.general]

views​::​all returns a view that includes all elements of its range argument.
The name views​::​all denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​all(E) is expression-equivalent to:
  • decay-copy(E) if the decayed type of E models view.
  • Otherwise, ref_view{E} if that expression is well-formed.
  • Otherwise, owning_view{E}.

25.7.6.2 Class template ref_view [range.ref.view]

ref_view is a view of the elements of some other range.
namespace std::ranges { template<range R> requires is_object_v<R> class ref_view : public view_interface<ref_view<R>> { private: R* r_; // exposition only public: template<different-from<ref_view> T> requires see below constexpr ref_view(T&& t); constexpr R& base() const { return *r_; } constexpr iterator_t<R> begin() const { return ranges::begin(*r_); } constexpr sentinel_t<R> end() const { return ranges::end(*r_); } constexpr bool empty() const requires requires { ranges::empty(*r_); } { return ranges::empty(*r_); } constexpr auto size() const requires sized_range<R> { return ranges::size(*r_); } constexpr auto data() const requires contiguous_range<R> { return ranges::data(*r_); } }; template<class R> ref_view(R&) -> ref_view<R>; }
template<different-from<ref_view> T> requires see below constexpr ref_view(T&& t);
Effects: Initializes r_ with addressof(static_cast<R&>(std​::​forward<T>(t))).
Remarks: Let FUN denote the exposition-only functions void FUN(R&); void FUN(R&&) = delete;
The expression in the requires-clause is equivalent to: convertible_to<T, R&> && requires { FUN(declval<T>()); }

25.7.6.3 Class template owning_view [range.owning.view]

owning_view is a move-only view of the elements of some other range.
namespace std::ranges { template<range R> requires movable<R> && (!is-initializer-list<R>) // see [range.refinements] class owning_view : public view_interface<owning_view<R>> { private: R r_ = R(); // exposition only public: owning_view() requires default_initializable<R> = default; constexpr owning_view(R&& t); owning_view(owning_view&&) = default; owning_view& operator=(owning_view&&) = default; constexpr R& base() & noexcept { return r_; } constexpr const R& base() const & noexcept { return r_; } constexpr R&& base() && noexcept { return std::move(r_); } constexpr const R&& base() const && noexcept { return std::move(r_); } constexpr iterator_t<R> begin() { return ranges::begin(r_); } constexpr sentinel_t<R> end() { return ranges::end(r_); } constexpr auto begin() const requires range<const R> { return ranges::begin(r_); } constexpr auto end() const requires range<const R> { return ranges::end(r_); } constexpr bool empty() requires requires { ranges::empty(r_); } { return ranges::empty(r_); } constexpr bool empty() const requires requires { ranges::empty(r_); } { return ranges::empty(r_); } constexpr auto size() requires sized_range<R> { return ranges::size(r_); } constexpr auto size() const requires sized_range<const R> { return ranges::size(r_); } constexpr auto data() requires contiguous_range<R> { return ranges::data(r_); } constexpr auto data() const requires contiguous_range<const R> { return ranges::data(r_); } }; }
constexpr owning_view(R&& t);
Effects: Initializes r_ with std​::​move(t).

25.7.7 As rvalue view [range.as.rvalue]

25.7.7.1 Overview [range.as.rvalue.overview]

as_rvalue_view presents a view of an underlying sequence with the same behavior as the underlying sequence except that its elements are rvalues.
Some generic algorithms can be called with an as_rvalue_view to replace copying with moving.
The name views​::​as_rvalue denotes a range adaptor object ([range.adaptor.object]).
Let E be an expression and let T be decltype((E)).
The expression views​::​as_rvalue(E) is expression-equivalent to:
  • views​::​all(E) if T models input_range and same_as<range_rvalue_reference_t<T>, range_reference_t<T>> is true.
  • Otherwise, as_rvalue_view(E).
[Example 1: vector<string> words = {"the", "quick", "brown", "fox", "ate", "a", "pterodactyl"}; vector<string> new_words; ranges::copy(words | views::as_rvalue, back_inserter(new_words)); // moves each string from words into new_words — end example]

25.7.7.2 Class template as_rvalue_view [range.as.rvalue.view]

namespace std::ranges { template<view V> requires input_range<V> class as_rvalue_view : public view_interface<as_rvalue_view<V>> { V base_ = V(); // exposition only public: as_rvalue_view() requires default_initializable<V> = default; constexpr explicit as_rvalue_view(V base); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { return move_iterator(ranges::begin(base_)); } constexpr auto begin() const requires range<const V> { return move_iterator(ranges::begin(base_)); } constexpr auto end() requires (!simple-view<V>) { if constexpr (common_range<V>) { return move_iterator(ranges::end(base_)); } else { return move_sentinel(ranges::end(base_)); } } constexpr auto end() const requires range<const V> { if constexpr (common_range<const V>) { return move_iterator(ranges::end(base_)); } else { return move_sentinel(ranges::end(base_)); } } constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } }; template<class R> as_rvalue_view(R&&) -> as_rvalue_view<views::all_t<R>>; }
constexpr explicit as_rvalue_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.8 Filter view [range.filter]

25.7.8.1 Overview [range.filter.overview]

filter_view presents a view of the elements of an underlying sequence that satisfy a predicate.
The name views​::​filter denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and P, the expression views​::​filter(E, P) is expression-equivalent to filter_view(E, P).
[Example 1: vector<int> is{ 0, 1, 2, 3, 4, 5, 6 }; auto evens = views::filter(is, [](int i) { return 0 == i % 2; }); for (int i : evens) cout << i << ' '; // prints 0 2 4 6 — end example]

25.7.8.2 Class template filter_view [range.filter.view]

namespace std::ranges { template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class filter_view : public view_interface<filter_view<V, Pred>> { private: V base_ = V(); // exposition only movable-box<Pred> pred_; // exposition only // [range.filter.iterator], class filter_view​::​iterator class iterator; // exposition only // [range.filter.sentinel], class filter_view​::​sentinel class sentinel; // exposition only public: filter_view() requires default_initializable<V> && default_initializable<Pred> = default; constexpr explicit filter_view(V base, Pred pred); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr const Pred& pred() const; constexpr iterator begin(); constexpr auto end() { if constexpr (common_range<V>) return iterator{*this, ranges::end(base_)}; else return sentinel{*this}; } }; template<class R, class Pred> filter_view(R&&, Pred) -> filter_view<views::all_t<R>, Pred>; }
constexpr explicit filter_view(V base, Pred pred);
Effects: Initializes base_ with std​::​move(base) and initializes pred_ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_;
constexpr iterator begin();
Preconditions: pred_.has_value() is true.
Returns: {*this, ranges​::​find_if(base_, ref(*pred_))}.
Remarks: In order to provide the amortized constant time complexity required by the range concept when filter_view models forward_range, this function caches the result within the filter_view for use on subsequent calls.

25.7.8.3 Class filter_view​::​iterator [range.filter.iterator]

namespace std::ranges { template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class filter_view<V, Pred>::iterator { private: iterator_t<V> current_ = iterator_t<V>(); // exposition only filter_view* parent_ = nullptr; // exposition only public: using iterator_concept = see below; using iterator_category = see below; // not always present using value_type = range_value_t<V>; using difference_type = range_difference_t<V>; iterator() requires default_initializable<iterator_t<V>> = default; constexpr iterator(filter_view& parent, iterator_t<V> current); constexpr const iterator_t<V>& base() const & noexcept; constexpr iterator_t<V> base() &&; constexpr range_reference_t<V> operator*() const; constexpr iterator_t<V> operator->() const requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<V>; constexpr iterator& operator--() requires bidirectional_range<V>; constexpr iterator operator--(int) requires bidirectional_range<V>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<V>>; friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_))); friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_, y.current_))) requires indirectly_swappable<iterator_t<V>>; }; }
Modification of the element a filter_view​::​iterator denotes is permitted, but results in undefined behavior if the resulting value does not satisfy the filter predicate.
iterator​::​iterator_concept is defined as follows:
The member typedef-name iterator_category is defined if and only if V models forward_range.
In that case, iterator​::​iterator_category is defined as follows:
  • Let C denote the type iterator_traits<iterator_t<V>>​::​iterator_category.
  • If C models derived_from<bidirectional_iterator_tag>, then iterator_category denotes bidirectional_iterator_tag.
  • Otherwise, if C models derived_from<forward_iterator_tag>, then iterator_category denotes forward_iterator_tag.
  • Otherwise, iterator_category denotes C.
constexpr iterator(filter_view& parent, iterator_t<V> current);
Effects: Initializes current_ with std​::​move(current) and parent_ with addressof(parent).
constexpr const iterator_t<V>& base() const & noexcept;
Effects: Equivalent to: return current_;
constexpr iterator_t<V> base() &&;
Effects: Equivalent to: return std​::​move(current_);
constexpr range_reference_t<V> operator*() const;
Effects: Equivalent to: return *current_;
constexpr iterator_t<V> operator->() const requires has-arrow<iterator_t<V>> && copyable<iterator_t<V>>;
Effects: Equivalent to: return current_;
constexpr iterator& operator++();
Effects: Equivalent to: current_ = ranges::find_if(std::move(++current_), ranges::end(parent_->base_), ref(*parent_->pred_)); return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires forward_range<V>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<V>;
Effects: Equivalent to: do --current_; while (!invoke(*parent_->pred_, *current_)); return *this;
constexpr iterator operator--(int) requires bidirectional_range<V>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<V>>;
Effects: Equivalent to: return x.current_ == y.current_;
friend constexpr range_rvalue_reference_t<V> iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_)));
Effects: Equivalent to: return ranges​::​iter_move(i.current_);
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_, y.current_))) requires indirectly_swappable<iterator_t<V>>;
Effects: Equivalent to ranges​::​iter_swap(x.current_, y.current_).

25.7.8.4 Class filter_view​::​sentinel [range.filter.sentinel]

namespace std::ranges { template<input_range V, indirect_unary_predicate<iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class filter_view<V, Pred>::sentinel { private: sentinel_t<V> end_ = sentinel_t<V>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(filter_view& parent); constexpr sentinel_t<V> base() const; friend constexpr bool operator==(const iterator& x, const sentinel& y); }; }
constexpr explicit sentinel(filter_view& parent);
Effects: Initializes end_ with ranges​::​end(parent.base_).
constexpr sentinel_t<V> base() const;
Effects: Equivalent to: return end_;
friend constexpr bool operator==(const iterator& x, const sentinel& y);
Effects: Equivalent to: return x.current_ == y.end_;

25.7.9 Transform view [range.transform]

25.7.9.1 Overview [range.transform.overview]

transform_view presents a view of an underlying sequence after applying a transformation function to each element.
The name views​::​transform denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​transform(E, F) is expression-equivalent to transform_view(E, F).
[Example 1: vector<int> is{ 0, 1, 2, 3, 4 }; auto squares = views::transform(is, [](int i) { return i * i; }); for (int i : squares) cout << i << ' '; // prints 0 1 4 9 16 — end example]

25.7.9.2 Class template transform_view [range.transform.view]

namespace std::ranges { template<input_range V, move_constructible F> requires view<V> && is_object_v<F> && regular_invocable<F&, range_reference_t<V>> && can-reference<invoke_result_t<F&, range_reference_t<V>>> class transform_view : public view_interface<transform_view<V, F>> { private: // [range.transform.iterator], class template transform_view​::​iterator template<bool> struct iterator; // exposition only // [range.transform.sentinel], class template transform_view​::​sentinel template<bool> struct sentinel; // exposition only V base_ = V(); // exposition only movable-box<F> fun_; // exposition only public: transform_view() requires default_initializable<V> && default_initializable<F> = default; constexpr explicit transform_view(V base, F fun); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr iterator<false> begin(); constexpr iterator<true> begin() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>; constexpr sentinel<false> end(); constexpr iterator<false> end() requires common_range<V>; constexpr sentinel<true> end() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>; constexpr iterator<true> end() const requires common_range<const V> && regular_invocable<const F&, range_reference_t<const V>>; constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } }; template<class R, class F> transform_view(R&&, F) -> transform_view<views::all_t<R>, F>; }
constexpr explicit transform_view(V base, F fun);
Effects: Initializes base_ with std​::​move(base) and fun_ with std​::​move(fun).
constexpr iterator<false> begin();
Effects: Equivalent to: return iterator<false>{*this, ranges::begin(base_)};
constexpr iterator<true> begin() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to: return iterator<true>{*this, ranges::begin(base_)};
constexpr sentinel<false> end();
Effects: Equivalent to: return sentinel<false>{ranges::end(base_)};
constexpr iterator<false> end() requires common_range<V>;
Effects: Equivalent to: return iterator<false>{*this, ranges::end(base_)};
constexpr sentinel<true> end() const requires range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to: return sentinel<true>{ranges::end(base_)};
constexpr iterator<true> end() const requires common_range<const V> && regular_invocable<const F&, range_reference_t<const V>>;
Effects: Equivalent to: return iterator<true>{*this, ranges::end(base_)};

25.7.9.3 Class template transform_view​::​iterator [range.transform.iterator]

namespace std::ranges { template<input_range V, move_constructible F> requires view<V> && is_object_v<F> && regular_invocable<F&, range_reference_t<V>> && can-reference<invoke_result_t<F&, range_reference_t<V>>> template<bool Const> class transform_view<V, F>::iterator { private: using Parent = maybe-const<Const, transform_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only Parent* parent_ = nullptr; // exposition only public: using iterator_concept = see below; using iterator_category = see below; // not always present using value_type = remove_cvref_t<invoke_result_t<maybe-const<Const, F>&, range_reference_t<Base>>>; using difference_type = range_difference_t<Base>; iterator() requires default_initializable<iterator_t<Base>> = default; constexpr iterator(Parent& parent, iterator_t<Base> current); constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr const iterator_t<Base>& base() const & noexcept; constexpr iterator_t<Base> base() &&; constexpr decltype(auto) operator*() const noexcept(noexcept(invoke(*parent_->fun_, *current_))) { return invoke(*parent_->fun_, *current_); } constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<Base>; constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type n) requires random_access_range<Base>; constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base> { return invoke(*parent_->fun_, current_[n]); } friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>; friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(iterator i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, iterator i) requires random_access_range<Base>; friend constexpr iterator operator-(iterator i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; }; }
iterator​::​iterator_concept is defined as follows:
The member typedef-name iterator_category is defined if and only if Base models forward_range.
In that case, iterator​::​iterator_category is defined as follows: Let C denote the type iterator_traits<iterator_t<Base>>​::​iterator_category.
  • If is_reference_v<invoke_result_t<maybe-const<Const, F>&, range_reference_t<Base>>> is true, then
    • if C models derived_from<contiguous_iterator_tag>, iterator_category denotes random_access_iterator_tag;
    • otherwise, iterator_category denotes C.
  • Otherwise, iterator_category denotes input_iterator_tag.
constexpr iterator(Parent& parent, iterator_t<Base> current);
Effects: Initializes current_ with std​::​move(current) and parent_ with addressof(parent).
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_) and parent_ with i.parent_.
constexpr const iterator_t<Base>& base() const & noexcept;
Effects: Equivalent to: return current_;
constexpr iterator_t<Base> base() &&;
Effects: Equivalent to: return std​::​move(current_);
constexpr iterator& operator++();
Effects: Equivalent to: ++current_; return *this;
constexpr void operator++(int);
Effects: Equivalent to ++current_.
constexpr iterator operator++(int) requires forward_range<Base>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: --current_; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ += n; return *this;
constexpr iterator& operator-=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ -= n; return *this;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_ == y.current_;
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return x.current_ < y.current_;
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_ <=> y.current_;
friend constexpr iterator operator+(iterator i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, iterator i) requires random_access_range<Base>;
Effects: Equivalent to: return iterator{*i.parent_, i.current_ + n};
friend constexpr iterator operator-(iterator i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: return iterator{*i.parent_, i.current_ - n};
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.current_ - y.current_;

25.7.9.4 Class template transform_view​::​sentinel [range.transform.sentinel]

namespace std::ranges { template<input_range V, move_constructible F> requires view<V> && is_object_v<F> && regular_invocable<F&, range_reference_t<V>> && can-reference<invoke_result_t<F&, range_reference_t<V>>> template<bool Const> class transform_view<V, F>::sentinel { private: using Parent = maybe-const<Const, transform_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(sentinel_t<Base> end); constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr sentinel_t<Base> base() const; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& y, const iterator<OtherConst>& x); }; }
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(i.end_).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_;
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ == y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ - y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& y, const iterator<OtherConst>& x);
Effects: Equivalent to: return y.end_ - x.current_;

25.7.10 Take view [range.take]

25.7.10.1 Overview [range.take.overview]

take_view produces a view of the first N elements from another view, or all the elements if the adapted view contains fewer than N.
The name views​::​take denotes a range adaptor object ([range.adaptor.object]).
Let E and F be expressions, let T be remove_cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>.
If decltype((F)) does not model convertible_to<D>, views​::​take(E, F) is ill-formed.
Otherwise, the expression views​::​take(E, F) is expression-equivalent to:
  • If T is a specialization of empty_view ([range.empty.view]), then ((void)F, decay-copy(E)), except that the evaluations of E and F are indeterminately sequenced.
  • Otherwise, if T models random_access_range and sized_range and is a specialization of span ([views.span]), basic_string_view ([string.view]), or subrange ([range.subrange]), then U(ranges​::​begin(E), ranges​::​begin(E) + std​::​min<D>(ranges​::​distance(E), F)), except that E is evaluated only once, where U is a type determined as follows:
    • if T is a specialization of span, then U is span<typename T​::​element_type>;
    • otherwise, if T is a specialization of basic_string_view, then U is T;
    • otherwise, T is a specialization of subrange, and U is subrange<iterator_t<T>>;
  • otherwise, if T is a specialization of iota_view ([range.iota.view]) that models random_access_range and sized_range, then iota_view(*ranges​::​begin(E), *(ranges​::​begin(E) + std​::​min<D>(ranges​::​distance(E), F))), except that E is evaluated only once.
  • Otherwise, if T is a specialization of repeat_view ([range.repeat.view]):
    • if T models sized_range, then views::repeat(*E.value_, std::min<D>(ranges::distance(E), F)) except that E is evaluated only once;
    • otherwise, views​::​repeat(*E.value_, static_cast<D>(F)).
  • Otherwise, take_view(E, F).
[Example 1: vector<int> is{0,1,2,3,4,5,6,7,8,9}; for (int i : is | views::take(5)) cout << i << ' '; // prints 0 1 2 3 4 — end example]

25.7.10.2 Class template take_view [range.take.view]

namespace std::ranges { template<view V> class take_view : public view_interface<take_view<V>> { private: V base_ = V(); // exposition only range_difference_t<V> count_ = 0; // exposition only // [range.take.sentinel], class template take_view​::​sentinel template<bool> class sentinel; // exposition only public: take_view() requires default_initializable<V> = default; constexpr explicit take_view(V base, range_difference_t<V> count); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { if constexpr (sized_range<V>) { if constexpr (random_access_range<V>) { return ranges::begin(base_); } else { auto sz = range_difference_t<V>(size()); return counted_iterator(ranges::begin(base_), sz); } } else if constexpr (sized_sentinel_for<sentinel_t<V>, iterator_t<V>>) { auto it = ranges::begin(base_); auto sz = std::min(count_, ranges::end(base_) - it); return counted_iterator(std::move(it), sz); } else { return counted_iterator(ranges::begin(base_), count_); } } constexpr auto begin() const requires range<const V> { if constexpr (sized_range<const V>) { if constexpr (random_access_range<const V>) { return ranges::begin(base_); } else { auto sz = range_difference_t<const V>(size()); return counted_iterator(ranges::begin(base_), sz); } } else if constexpr (sized_sentinel_for<sentinel_t<const V>, iterator_t<const V>>) { auto it = ranges::begin(base_); auto sz = std::min(count_, ranges::end(base_) - it); return counted_iterator(std::move(it), sz); } else { return counted_iterator(ranges::begin(base_), count_); } } constexpr auto end() requires (!simple-view<V>) { if constexpr (sized_range<V>) { if constexpr (random_access_range<V>) return ranges::begin(base_) + range_difference_t<V>(size()); else return default_sentinel; } else if constexpr (sized_sentinel_for<sentinel_t<V>, iterator_t<V>>) { return default_sentinel; } else { return sentinel<false>{ranges::end(base_)}; } } constexpr auto end() const requires range<const V> { if constexpr (sized_range<const V>) { if constexpr (random_access_range<const V>) return ranges::begin(base_) + range_difference_t<const V>(size()); else return default_sentinel; } else if constexpr (sized_sentinel_for<sentinel_t<const V>, iterator_t<const V>>) { return default_sentinel; } else { return sentinel<true>{ranges::end(base_)}; } } constexpr auto size() requires sized_range<V> { auto n = ranges::size(base_); return ranges::min(n, static_cast<decltype(n)>(count_)); } constexpr auto size() const requires sized_range<const V> { auto n = ranges::size(base_); return ranges::min(n, static_cast<decltype(n)>(count_)); } }; template<class R> take_view(R&&, range_difference_t<R>) -> take_view<views::all_t<R>>; }
constexpr explicit take_view(V base, range_difference_t<V> count);
Preconditions: count >= 0 is true.
Effects: Initializes base_ with std​::​move(base) and count_ with count.

25.7.10.3 Class template take_view​::​sentinel [range.take.sentinel]

namespace std::ranges { template<view V> template<bool Const> class take_view<V>::sentinel { private: using Base = maybe-const<Const, V>; // exposition only template<bool OtherConst> using CI = counted_iterator<iterator_t<maybe-const<OtherConst, V>>>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(sentinel_t<Base> end); constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr sentinel_t<Base> base() const; friend constexpr bool operator==(const CI<Const>& y, const sentinel& x); template<bool OtherConst = !Const> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const CI<OtherConst>& y, const sentinel& x); }; }
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(s.end_).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_;
friend constexpr bool operator==(const CI<Const>& y, const sentinel& x); template<bool OtherConst = !Const> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const CI<OtherConst>& y, const sentinel& x);
Effects: Equivalent to: return y.count() == 0 || y.base() == x.end_;

25.7.11 Take while view [range.take.while]

25.7.11.1 Overview [range.take.while.overview]

Given a unary predicate pred and a view r, take_while_view produces a view of the range [ranges​::​begin(r), ranges​::​find_if_not(r, pred)).
The name views​::​take_while denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​take_while(E, F) is expression-equivalent to take_while_view(E, F).
[Example 1: auto input = istringstream{"0 1 2 3 4 5 6 7 8 9"}; auto small = [](const auto x) noexcept { return x < 5; }; auto small_ints = views::istream<int>(input) | views::take_while(small); for (const auto i : small_ints) { cout << i << ' '; // prints 0 1 2 3 4 } auto i = 0; input >> i; cout << i; // prints 6 — end example]

25.7.11.2 Class template take_while_view [range.take.while.view]

namespace std::ranges { template<view V, class Pred> requires input_range<V> && is_object_v<Pred> && indirect_unary_predicate<const Pred, iterator_t<V>> class take_while_view : public view_interface<take_while_view<V, Pred>> { // [range.take.while.sentinel], class template take_while_view​::​sentinel template<bool> class sentinel; // exposition only V base_ = V(); // exposition only movable-box<Pred> pred_; // exposition only public: take_while_view() requires default_initializable<V> && default_initializable<Pred> = default; constexpr explicit take_while_view(V base, Pred pred); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr const Pred& pred() const; constexpr auto begin() requires (!simple-view<V>) { return ranges::begin(base_); } constexpr auto begin() const requires range<const V> && indirect_unary_predicate<const Pred, iterator_t<const V>> { return ranges::begin(base_); } constexpr auto end() requires (!simple-view<V>) { return sentinel<false>(ranges::end(base_), addressof(*pred_)); } constexpr auto end() const requires range<const V> && indirect_unary_predicate<const Pred, iterator_t<const V>> { return sentinel<true>(ranges::end(base_), addressof(*pred_)); } }; template<class R, class Pred> take_while_view(R&&, Pred) -> take_while_view<views::all_t<R>, Pred>; }
constexpr explicit take_while_view(V base, Pred pred);
Effects: Initializes base_ with std​::​move(base) and pred_ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_;

25.7.11.3 Class template take_while_view​::​sentinel [range.take.while.sentinel]

namespace std::ranges { template<view V, class Pred> requires input_range<V> && is_object_v<Pred> && indirect_unary_predicate<const Pred, iterator_t<V>> template<bool Const> class take_while_view<V, Pred>::sentinel { using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only const Pred* pred_ = nullptr; // exposition only public: sentinel() = default; constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred); constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr sentinel_t<Base> base() const { return end_; } friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y); template<bool OtherConst = !Const> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator_t<maybe-const<OtherConst, V>>& x, const sentinel& y); }; }
constexpr explicit sentinel(sentinel_t<Base> end, const Pred* pred);
Effects: Initializes end_ with end and pred_ with pred.
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(s.end_) and pred_ with s.pred_.
friend constexpr bool operator==(const iterator_t<Base>& x, const sentinel& y); template<bool OtherConst = !Const> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator_t<maybe-const<OtherConst, V>>& x, const sentinel& y);
Effects: Equivalent to: return y.end_ == x || !invoke(*y.pred_, *x);

25.7.12 Drop view [range.drop]

25.7.12.1 Overview [range.drop.overview]

drop_view produces a view excluding the first N elements from another view, or an empty range if the adapted view contains fewer than N elements.
The name views​::​drop denotes a range adaptor object ([range.adaptor.object]).
Let E and F be expressions, let T be remove_cvref_t<decltype((E))>, and let D be range_difference_t<decltype((E))>.
If decltype((F)) does not model convertible_to<D>, views​::​drop(E, F) is ill-formed.
Otherwise, the expression views​::​drop(E, F) is expression-equivalent to:
  • If T is a specialization of empty_view ([range.empty.view]), then ((void)F, decay-copy(E)), except that the evaluations of E and F are indeterminately sequenced.
  • Otherwise, if T models random_access_range and sized_range and is then U(ranges​::​begin(E) + std​::​min<D>(ranges​::​distance(E), F), ranges​::​end(E)), except that E is evaluated only once, where U is span<typename T​::​element_type> if T is a specialization of span and T otherwise.
  • Otherwise, if T is a specialization of subrange that models random_access_range and sized_range, then T(ranges​::​begin(E) + std​::​min<D>(ranges​::​distance(E), F), ranges​::​end(E), to-unsigned-like(ranges​::​distance(E) - std​::​min<D>(ranges​::​distance(E), F))), except that E and F are each evaluated only once.
  • Otherwise, if T is a specialization of repeat_view ([range.repeat.view]):
    • if T models sized_range, then views::repeat(*E.value_, ranges::distance(E) - std::min<D>(ranges::distance(E), F)) except that E is evaluated only once;
    • otherwise, ((void)F, decay-copy(E)), except that the evaluations of E and F are indeterminately sequenced.
  • Otherwise, drop_view(E, F).
[Example 1: auto ints = views::iota(0) | views::take(10); for (auto i : ints | views::drop(5)) { cout << i << ' '; // prints 5 6 7 8 9 } — end example]

25.7.12.2 Class template drop_view [range.drop.view]

namespace std::ranges { template<view V> class drop_view : public view_interface<drop_view<V>> { public: drop_view() requires default_initializable<V> = default; constexpr explicit drop_view(V base, range_difference_t<V> count); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!(simple-view<V> && random_access_range<const V> && sized_range<const V>)); constexpr auto begin() const requires random_access_range<const V> && sized_range<const V>; constexpr auto end() requires (!simple-view<V>) { return ranges::end(base_); } constexpr auto end() const requires range<const V> { return ranges::end(base_); } constexpr auto size() requires sized_range<V> { const auto s = ranges::size(base_); const auto c = static_cast<decltype(s)>(count_); return s < c ? 0 : s - c; } constexpr auto size() const requires sized_range<const V> { const auto s = ranges::size(base_); const auto c = static_cast<decltype(s)>(count_); return s < c ? 0 : s - c; } private: V base_ = V(); // exposition only range_difference_t<V> count_ = 0; // exposition only }; template<class R> drop_view(R&&, range_difference_t<R>) -> drop_view<views::all_t<R>>; }
constexpr explicit drop_view(V base, range_difference_t<V> count);
Preconditions: count >= 0 is true.
Effects: Initializes base_ with std​::​move(base) and count_ with count.
constexpr auto begin() requires (!(simple-view<V> && random_access_range<const V> && sized_range<const V>)); constexpr auto begin() const requires random_access_range<const V> && sized_range<const V>;
Returns: ranges​::​next(ranges​::​begin(base_), count_, ranges​::​end(base_)).
Remarks: In order to provide the amortized constant-time complexity required by the range concept when drop_view models forward_range, the first overload caches the result within the drop_view for use on subsequent calls.
[Note 1: 
Without this, applying a reverse_view over a drop_view would have quadratic iteration complexity.
— end note]

25.7.13 Drop while view [range.drop.while]

25.7.13.1 Overview [range.drop.while.overview]

Given a unary predicate pred and a view r, drop_while_view produces a view of the range [ranges​::​find_if_not(r, pred), ranges​::​end(r)).
The name views​::​drop_while denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​drop_while(E, F) is expression-equivalent to drop_while_view(E, F).
[Example 1: constexpr auto source = " \t \t \t hello there"sv; auto is_invisible = [](const auto x) { return x == ' ' || x == '\t'; }; auto skip_ws = views::drop_while(source, is_invisible); for (auto c : skip_ws) { cout << c; // prints hello there with no leading space } — end example]

25.7.13.2 Class template drop_while_view [range.drop.while.view]

namespace std::ranges { template<view V, class Pred> requires input_range<V> && is_object_v<Pred> && indirect_unary_predicate<const Pred, iterator_t<V>> class drop_while_view : public view_interface<drop_while_view<V, Pred>> { public: drop_while_view() requires default_initializable<V> && default_initializable<Pred> = default; constexpr explicit drop_while_view(V base, Pred pred); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr const Pred& pred() const; constexpr auto begin(); constexpr auto end() { return ranges::end(base_); } private: V base_ = V(); // exposition only movable-box<Pred> pred_; // exposition only }; template<class R, class Pred> drop_while_view(R&&, Pred) -> drop_while_view<views::all_t<R>, Pred>; }
constexpr explicit drop_while_view(V base, Pred pred);
Effects: Initializes base_ with std​::​move(base) and pred_ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_;
constexpr auto begin();
Preconditions: pred_.has_value() is true.
Returns: ranges​::​find_if_not(base_, cref(*pred_)).
Remarks: In order to provide the amortized constant-time complexity required by the range concept when drop_while_view models forward_range, the first call caches the result within the drop_while_view for use on subsequent calls.
[Note 1: 
Without this, applying a reverse_view over a drop_while_view would have quadratic iteration complexity.
— end note]

25.7.14 Join view [range.join]

25.7.14.1 Overview [range.join.overview]

join_view flattens a view of ranges into a view.
The name views​::​join denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​join(E) is expression-equivalent to join_view<views​::​all_t<decltype((E))>>{E}.
[Example 1: vector<string> ss{"hello", " ", "world", "!"}; for (char ch : ss | views::join) cout << ch; // prints hello world! — end example]

25.7.14.2 Class template join_view [range.join.view]

namespace std::ranges { template<input_range V> requires view<V> && input_range<range_reference_t<V>> class join_view : public view_interface<join_view<V>> { private: using InnerRng = range_reference_t<V>; // exposition only // [range.join.iterator], class template join_view​::​iterator template<bool Const> struct iterator; // exposition only // [range.join.sentinel], class template join_view​::​sentinel template<bool Const> struct sentinel; // exposition only V base_ = V(); // exposition only non-propagating-cache<iterator_t<V>> outer_; // exposition only, present only // when !forward_range<V> non-propagating-cache<remove_cv_t<InnerRng>> inner_; // exposition only, present only // if is_reference_v<InnerRng> is false public: join_view() requires default_initializable<V> = default; constexpr explicit join_view(V base); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() { if constexpr (forward_range<V>) { constexpr bool use_const = simple-view<V> && is_reference_v<InnerRng>; return iterator<use_const>{*this, ranges::begin(base_)}; } else { outer_ = ranges::begin(base_); return iterator<false>{*this}; } } constexpr auto begin() const requires forward_range<const V> && is_reference_v<range_reference_t<const V>> && input_range<range_reference_t<const V>> { return iterator<true>{*this, ranges::begin(base_)}; } constexpr auto end() { if constexpr (forward_range<V> && is_reference_v<InnerRng> && forward_range<InnerRng> && common_range<V> && common_range<InnerRng>) return iterator<simple-view<V>>{*this, ranges::end(base_)}; else return sentinel<simple-view<V>>{*this}; } constexpr auto end() const requires forward_range<const V> && is_reference_v<range_reference_t<const V>> && input_range<range_reference_t<const V>> { if constexpr (forward_range<range_reference_t<const V>> && common_range<const V> && common_range<range_reference_t<const V>>) return iterator<true>{*this, ranges::end(base_)}; else return sentinel<true>{*this}; } }; template<class R> explicit join_view(R&&) -> join_view<views::all_t<R>>; }
constexpr explicit join_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.14.3 Class template join_view​::​iterator [range.join.iterator]

namespace std::ranges { template<input_range V> requires view<V> && input_range<range_reference_t<V>> template<bool Const> struct join_view<V>::iterator { private: using Parent = maybe-const<Const, join_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only using OuterIter = iterator_t<Base>; // exposition only using InnerIter = iterator_t<range_reference_t<Base>>; // exposition only static constexpr bool ref-is-glvalue = // exposition only is_reference_v<range_reference_t<Base>>; OuterIter outer_ = OuterIter(); // exposition only, present only // if Base models forward_range optional<InnerIter> inner_; // exposition only Parent* parent_ = nullptr; // exposition only constexpr void satisfy(); // exposition only constexpr OuterIter& outer(); // exposition only constexpr const OuterIter& outer() const; // exposition only constexpr iterator(Parent& parent, OuterIter outer) requires forward_range<Base>; // exposition only constexpr explicit iterator(Parent& parent) requires (!forward_range<Base>); // exposition only public: using iterator_concept = see below; using iterator_category = see below; // not always present using value_type = range_value_t<range_reference_t<Base>>; using difference_type = see below; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, OuterIter> && convertible_to<iterator_t<InnerRng>, InnerIter>; constexpr decltype(auto) operator*() const { return **inner_; } constexpr InnerIter operator->() const requires has-arrow<InnerIter> && copyable<InnerIter>; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires ref-is-glvalue && forward_range<Base> && forward_range<range_reference_t<Base>>; constexpr iterator& operator--() requires ref-is-glvalue && bidirectional_range<Base> && bidirectional_range<range_reference_t<Base>> && common_range<range_reference_t<Base>>; constexpr iterator operator--(int) requires ref-is-glvalue && bidirectional_range<Base> && bidirectional_range<range_reference_t<Base>> && common_range<range_reference_t<Base>>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires ref-is-glvalue && forward_range<Base> && equality_comparable<iterator_t<range_reference_t<Base>>>; friend constexpr decltype(auto) iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(*i.inner_))) { return ranges::iter_move(*i.inner_); } friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(*x.inner_, *y.inner_))) requires indirectly_swappable<InnerIter>; }; }
iterator​::​iterator_concept is defined as follows:
  • If ref-is-glvalue is true, Base models bidirectional_range, and range_reference_t<Base> models both bidirectional_range and common_range, then iterator_concept denotes bidirectional_iterator_tag.
  • Otherwise, if ref-is-glvalue is true and Base and range_reference_t<Base> each model forward_range, then iterator_concept denotes forward_iterator_tag.
  • Otherwise, iterator_concept denotes input_iterator_tag.
The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, Base models forward_range, and range_reference_t<Base> models forward_range.
In that case, iterator​::​iterator_category is defined as follows:
  • Let OUTERC denote iterator_traits<iterator_t<Base>>​::​iterator_category, and let INNERC denote iterator_traits<iterator_t<range_reference_t<Base>>>​::​iterator_category.
  • If OUTERC and INNERC each model derived_from<bidirectional_iterator_tag> and range_reference_t<Base> models common_range, iterator_category denotes bidirectional_iterator_tag.
  • Otherwise, if OUTERC and INNERC each model derived_from<forward_iterator_tag>, iterator_category denotes forward_iterator_tag.
  • Otherwise, iterator_category denotes input_iterator_tag.
iterator​::​difference_type denotes the type: common_type_t< range_difference_t<Base>, range_difference_t<range_reference_t<Base>>>
join_view iterators use the satisfy function to skip over empty inner ranges.
constexpr OuterIter& outer(); constexpr const OuterIter& outer() const;
Returns: outer_ if Base models forward_range; otherwise, *parent_->outer_.
constexpr void satisfy();
Effects: Equivalent to: auto update_inner = [this](const iterator_t<Base>& x) -> auto&& { if constexpr (ref-is-glvalue) // *x is a reference return *x; else return parent_->inner_.emplace-deref(x); }; for (; outer() != ranges::end(parent_->base_); ++outer()) { auto&& inner = update_inner(outer()); inner_ = ranges::begin(inner); if (*inner_ != ranges::end(inner)) return; } if constexpr (ref-is-glvalue) inner_.reset();
constexpr iterator(Parent& parent, OuterIter outer) requires forward_range<Base>;
Effects: Initializes outer_ with std​::​move(outer) and parent_ with addressof(parent); then calls satisfy().
constexpr explicit iterator(Parent& parent) requires (!forward_range<Base>);
Effects: Initializes parent_ with addressof(parent); then calls satisfy().
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, OuterIter> && convertible_to<iterator_t<InnerRng>, InnerIter>;
Effects: Initializes outer_ with std​::​move(i.outer_), inner_ with std​::​move(i.inner_), and parent_ with i.parent_.
[Note 1: 
Const can only be true when Base models forward_range.
— end note]
constexpr InnerIter operator->() const requires has-arrow<InnerIter> && copyable<InnerIter>;
Effects: Equivalent to: return *inner_;
constexpr iterator& operator++();
Let inner-range be:
  • If ref-is-glvalue is true, *outer().
  • Otherwise, *parent_->inner_.
Effects: Equivalent to: if (++*inner_ == ranges::end(as-lvalue(inner-range))) { ++outer(); satisfy(); } return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++*this.
constexpr iterator operator++(int) requires ref-is-glvalue && forward_range<Base> && forward_range<range_reference_t<Base>>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires ref-is-glvalue && bidirectional_range<Base> && bidirectional_range<range_reference_t<Base>> && common_range<range_reference_t<Base>>;
Effects: Equivalent to: if (outer_ == ranges::end(parent_->base_)) inner_ = ranges::end(as-lvalue(*--outer_)); while (*inner_ == ranges::begin(as-lvalue(*outer_))) *inner_ = ranges::end(as-lvalue(*--outer_)); --*inner_; return *this;
constexpr iterator operator--(int) requires ref-is-glvalue && bidirectional_range<Base> && bidirectional_range<range_reference_t<Base>> && common_range<range_reference_t<Base>>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires ref-is-glvalue && forward_range<Base> && equality_comparable<iterator_t<range_reference_t<Base>>>;
Effects: Equivalent to: return x.outer_ == y.outer_ && x.inner_ == y.inner_;
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(*x.inner_, *y.inner_))) requires indirectly_swappable<InnerIter>;
Effects: Equivalent to: return ranges​::​iter_swap(*x.inner_, *y.inner_);

25.7.14.4 Class template join_view​::​sentinel [range.join.sentinel]

namespace std::ranges { template<input_range V> requires view<V> && input_range<range_reference_t<V>> template<bool Const> struct join_view<V>::sentinel { private: using Parent = maybe-const<Const, join_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(Parent& parent); constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); }; }
constexpr explicit sentinel(Parent& parent);
Effects: Initializes end_ with ranges​::​end(parent.base_).
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(s.end_).
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.outer() == y.end_;

25.7.15 Join with view [range.join.with]

25.7.15.1 Overview [range.join.with.overview]

join_with_view takes a view and a delimiter, and flattens the view, inserting every element of the delimiter in between elements of the view.
The delimiter can be a single element or a view of elements.
The name views​::​join_with denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​join_with(E, F) is expression-equivalent to join_with_view(E, F).
[Example 1: vector<string> vs = {"the", "quick", "brown", "fox"}; for (char c : vs | views::join_with('-')) { cout << c; } // The above prints the-quick-brown-fox — end example]

25.7.15.2 Class template join_with_view [range.join.with.view]

namespace std::ranges { template<class R> concept bidirectional-common = bidirectional_range<R> && common_range<R>; // exposition only template<input_range V, forward_range Pattern> requires view<V> && input_range<range_reference_t<V>> && view<Pattern> && concatable<range_reference_t<V>, Pattern> class join_with_view : public view_interface<join_with_view<V, Pattern>> { using InnerRng = range_reference_t<V>; // exposition only V base_ = V(); // exposition only non-propagating-cache<iterator_t<V>> outer_it_; // exposition only, present only // when !forward_range<V> non-propagating-cache<remove_cv_t<InnerRng>> inner_; // exposition only, present only // if is_reference_v<InnerRng> is false Pattern pattern_ = Pattern(); // exposition only // [range.join.with.iterator], class template join_with_view​::​iterator template<bool Const> struct iterator; // exposition only // [range.join.with.sentinel], class template join_with_view​::​sentinel template<bool Const> struct sentinel; // exposition only public: join_with_view() requires default_initializable<V> && default_initializable<Pattern> = default; constexpr explicit join_with_view(V base, Pattern pattern); template<input_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<InnerRng>>> constexpr explicit join_with_view(R&& r, range_value_t<InnerRng> e); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() { if constexpr (forward_range<V>) { constexpr bool use_const = simple-view<V> && is_reference_v<InnerRng> && simple-view<Pattern>; return iterator<use_const>{*this, ranges::begin(base_)}; } else { outer_it_ = ranges::begin(base_); return iterator<false>{*this}; } } constexpr auto begin() const requires forward_range<const V> && forward_range<const Pattern> && is_reference_v<range_reference_t<const V>> && input_range<range_reference_t<const V>> && concatable<range_reference_t<const V>, const Pattern> { return iterator<true>{*this, ranges::begin(base_)}; } constexpr auto end() { if constexpr (forward_range<V> && is_reference_v<InnerRng> && forward_range<InnerRng> && common_range<V> && common_range<InnerRng>) return iterator<simple-view<V> && simple-view<Pattern>>{*this, ranges::end(base_)}; else return sentinel<simple-view<V> && simple-view<Pattern>>{*this}; } constexpr auto end() const requires forward_range<const V> && forward_range<const Pattern> && is_reference_v<range_reference_t<const V>> && input_range<range_reference_t<const V>> && concatable<range_reference_t<const V>, const Pattern> { using InnerConstRng = range_reference_t<const V>; if constexpr (forward_range<InnerConstRng> && common_range<const V> && common_range<InnerConstRng>) return iterator<true>{*this, ranges::end(base_)}; else return sentinel<true>{*this}; } }; template<class R, class P> join_with_view(R&&, P&&) -> join_with_view<views::all_t<R>, views::all_t<P>>; template<input_range R> join_with_view(R&&, range_value_t<range_reference_t<R>>) -> join_with_view<views::all_t<R>, single_view<range_value_t<range_reference_t<R>>>>; }
constexpr explicit join_with_view(V base, Pattern pattern);
Effects: Initializes base_ with std​::​move(base) and pattern_ with std​::​move(pattern).
template<input_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<InnerRng>>> constexpr explicit join_with_view(R&& r, range_value_t<InnerRng> e);
Effects: Initializes base_ with views​::​all(std​::​forward<R>(r)) and pattern_ with views​::​single(std​::​move(e)).

25.7.15.3 Class template join_with_view​::​iterator [range.join.with.iterator]

namespace std::ranges { template<input_range V, forward_range Pattern> requires view<V> && input_range<range_reference_t<V>> && view<Pattern> && concatable<range_reference_t<V>, Pattern> template<bool Const> class join_with_view<V, Pattern>::iterator { using Parent = maybe-const<Const, join_with_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only using InnerBase = range_reference_t<Base>; // exposition only using PatternBase = maybe-const<Const, Pattern>; // exposition only using OuterIter = iterator_t<Base>; // exposition only using InnerIter = iterator_t<InnerBase>; // exposition only using PatternIter = iterator_t<PatternBase>; // exposition only static constexpr bool ref-is-glvalue = is_reference_v<InnerBase>; // exposition only Parent* parent_ = nullptr; // exposition only OuterIter outer_it_ = OuterIter(); // exposition only, present only // if Base models forward_range variant<PatternIter, InnerIter> inner_it_; // exposition only constexpr iterator(Parent& parent, OuterIter outer) requires forward_range<Base>; // exposition only constexpr explicit iterator(Parent& parent) requires (!forward_range<Base>); // exposition only constexpr OuterIter& outer(); // exposition only constexpr const OuterIter& outer() const; // exposition only constexpr auto& update-inner(); // exposition only constexpr auto& get-inner(); // exposition only constexpr void satisfy(); // exposition only public: using iterator_concept = see below; using iterator_category = see below; // not always present using value_type = see below; using difference_type = see below; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, OuterIter> && convertible_to<iterator_t<InnerRng>, InnerIter> && convertible_to<iterator_t<Pattern>, PatternIter>; constexpr decltype(auto) operator*() const; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires ref-is-glvalue && forward_iterator<OuterIter> && forward_iterator<InnerIter>; constexpr iterator& operator--() requires ref-is-glvalue && bidirectional_range<Base> && bidirectional-common<InnerBase> && bidirectional-common<PatternBase>; constexpr iterator operator--(int) requires ref-is-glvalue && bidirectional_range<Base> && bidirectional-common<InnerBase> && bidirectional-common<PatternBase>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires ref-is-glvalue && forward_range<Base> && equality_comparable<InnerIter>; friend constexpr decltype(auto) iter_move(const iterator& x) { using rvalue_reference = common_reference_t< iter_rvalue_reference_t<InnerIter>, iter_rvalue_reference_t<PatternIter>>; return visit<rvalue_reference>(ranges::iter_move, x.inner_it_); } friend constexpr void iter_swap(const iterator& x, const iterator& y) requires indirectly_swappable<InnerIter, PatternIter> { visit(ranges::iter_swap, x.inner_it_, y.inner_it_); } }; }
iterator​::​iterator_concept is defined as follows:
  • If ref-is-glvalue is true, Base models bidirectional_range, and InnerBase and PatternBase each model bidirectional-common, then iterator_concept denotes bidirectional_iterator_tag.
  • Otherwise, if ref-is-glvalue is true and Base and InnerBase each model forward_range, then iterator_concept denotes forward_iterator_tag.
  • Otherwise, iterator_concept denotes input_iterator_tag.
The member typedef-name iterator_category is defined if and only if ref-is-glvalue is true, and Base and InnerBase each model forward_range.
In that case, iterator​::​iterator_category is defined as follows:
  • Let OUTERC denote iterator_traits<OuterIter>​::​iterator_category, let INNERC denote iterator_traits<InnerIter>​::​iterator_category, and let PATTERNC denote iterator_traits<PatternIter>​::​iterator_category.
  • If is_reference_v<common_reference_t<iter_reference_t<InnerIter>, iter_reference_t<PatternIter>>> is false, iterator_category denotes input_iterator_tag.
  • Otherwise, if OUTERC, INNERC, and PATTERNC each model derived_from<bidirectional_iterator_tag> and InnerBase and PatternBase each model common_range, iterator_category denotes bidirectional_iterator_tag.
  • Otherwise, if OUTERC, INNERC, and PATTERNC each model derived_from<forward_iterator_tag>, iterator_category denotes forward_iterator_tag.
  • Otherwise, iterator_category denotes input_iterator_tag.
iterator​::​value_type denotes the type: common_type_t<iter_value_t<InnerIter>, iter_value_t<PatternIter>>
iterator​::​difference_type denotes the type: common_type_t< iter_difference_t<OuterIter>, iter_difference_t<InnerIter>, iter_difference_t<PatternIter>>
constexpr OuterIter& outer(); constexpr const OuterIter& outer() const;
Returns: outer_it_ if Base models forward_range; otherwise, *parent_->outer_it_.
constexpr auto& update-inner();
Effects: Equivalent to: if constexpr (ref-is-glvalue) return as-lvalue(*outer()); else return parent_->inner_.emplace-deref(outer());
constexpr auto& get-inner();
Effects: Equivalent to: if constexpr (ref-is-glvalue) return as-lvalue(*outer()); else return *parent_->inner_;
constexpr void satisfy();
Effects: Equivalent to: while (true) { if (inner_it_.index() == 0) { if (std::get<0>(inner_it_) != ranges::end(parent_->pattern_)) break; inner_it_.template emplace<1>(ranges::begin(update-inner())); } else { if (std::get<1>(inner_it_) != ranges::end(get-inner())) break; if (++outer() == ranges::end(parent_->base_)) { if constexpr (ref-is-glvalue) inner_it_.template emplace<0>(); break; } inner_it_.template emplace<0>(ranges::begin(parent_->pattern_)); } }
[Note 1: 
join_with_view iterators use the satisfy function to skip over empty inner ranges.
— end note]
constexpr iterator(Parent& parent, OuterIter outer) requires forward_range<Base>; constexpr explicit iterator(Parent& parent) requires (!forward_range<Base>);
Effects: Initializes parent_ with addressof(parent).
For the first overload, also initializes outer_it_ with std​::​move(outer).
Then, equivalent to: if (outer() != ranges::end(parent_->base_)) { inner_it_.template emplace<1>(ranges::begin(update-inner())); satisfy(); }
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, OuterIter> && convertible_to<iterator_t<InnerRng>, InnerIter> && convertible_to<iterator_t<Pattern>, PatternIter>;
Effects: Initializes outer_it_ with std​::​move(i.outer_it_) and parent_ with i.parent_.
Then, equivalent to: if (i.inner_it_.index() == 0) inner_it_.template emplace<0>(std::get<0>(std::move(i.inner_it_))); else inner_it_.template emplace<1>(std::get<1>(std::move(i.inner_it_)));
[Note 2: 
Const can only be true when Base models forward_range.
— end note]
constexpr decltype(auto) operator*() const;
Effects: Equivalent to: using reference = common_reference_t<iter_reference_t<InnerIter>, iter_reference_t<PatternIter>>; return visit([](auto& it) -> reference { return *it; }, inner_it_);
constexpr iterator& operator++();
Effects: Equivalent to: visit([](auto& it){ ++it; }, inner_it_); satisfy(); return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires ref-is-glvalue && forward_iterator<OuterIter> && forward_iterator<InnerIter>;
Effects: Equivalent to: iterator tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires ref-is-glvalue && bidirectional_range<Base> && bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;
Effects: Equivalent to: if (outer_it_ == ranges::end(parent_->base_)) { auto&& inner = *--outer_it_; inner_it_.template emplace<1>(ranges::end(inner)); } while (true) { if (inner_it_.index() == 0) { auto& it = std::get<0>(inner_it_); if (it == ranges::begin(parent_->pattern_)) { auto&& inner = *--outer_it_; inner_it_.template emplace<1>(ranges::end(inner)); } else { break; } } else { auto& it = std::get<1>(inner_it_); auto&& inner = *outer_it_; if (it == ranges::begin(inner)) { inner_it_.template emplace<0>(ranges::end(parent_->pattern_)); } else { break; } } } visit([](auto& it){ --it; }, inner_it_); return *this;
constexpr iterator operator--(int) requires ref-is-glvalue && bidirectional_range<Base> && bidirectional-common<InnerBase> && bidirectional-common<PatternBase>;
Effects: Equivalent to: iterator tmp = *this; --*this; return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires ref-is-glvalue && forward_range<Base> && equality_comparable<InnerIter>;
Effects: Equivalent to: return x.outer_it_ == y.outer_it_ && x.inner_it_ == y.inner_it_;

25.7.15.4 Class template join_with_view​::​sentinel [range.join.with.sentinel]

namespace std::ranges { template<input_range V, forward_range Pattern> requires view<V> && input_range<range_reference_t<V>> && view<Pattern> && concatable<range_reference_t<V>, Pattern> template<bool Const> class join_with_view<V, Pattern>::sentinel { using Parent = maybe-const<Const, join_with_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only constexpr explicit sentinel(Parent& parent); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); }; }
constexpr explicit sentinel(Parent& parent);
Effects: Initializes end_ with ranges​::​end(parent.base_).
constexpr sentinel(sentinel<!Const> s) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(s.end_).
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.outer() == y.end_;

25.7.16 Lazy split view [range.lazy.split]

25.7.16.1 Overview [range.lazy.split.overview]

lazy_split_view takes a view and a delimiter, and splits the view into subranges on the delimiter.
The delimiter can be a single element or a view of elements.
The name views​::​lazy_split denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​lazy_split(E, F) is expression-equivalent to lazy_split_view(E, F).
[Example 1: string str{"the quick brown fox"}; for (auto word : str | views::lazy_split(' ')) { for (char ch : word) cout << ch; cout << '*'; } // The above prints the*quick*brown*fox* — end example]

25.7.16.2 Class template lazy_split_view [range.lazy.split.view]

namespace std::ranges { template<auto> struct require-constant; // exposition only template<class R> concept tiny-range = // exposition only sized_range<R> && requires { typename require-constant<remove_reference_t<R>::size()>; } && (remove_reference_t<R>::size() <= 1); template<input_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> && (forward_range<V> || tiny-range<Pattern>) class lazy_split_view : public view_interface<lazy_split_view<V, Pattern>> { private: V base_ = V(); // exposition only Pattern pattern_ = Pattern(); // exposition only non-propagating-cache<iterator_t<V>> current_; // exposition only, present only // if forward_range<V> is false // [range.lazy.split.outer], class template lazy_split_view​::​outer-iterator template<bool> struct outer-iterator; // exposition only // [range.lazy.split.inner], class template lazy_split_view​::​inner-iterator template<bool> struct inner-iterator; // exposition only public: lazy_split_view() requires default_initializable<V> && default_initializable<Pattern> = default; constexpr explicit lazy_split_view(V base, Pattern pattern); template<input_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<R>>> constexpr explicit lazy_split_view(R&& r, range_value_t<R> e); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() { if constexpr (forward_range<V>) { return outer-iterator<simple-view<V> && simple-view<Pattern>> {*this, ranges::begin(base_)}; } else { current_ = ranges::begin(base_); return outer-iterator<false>{*this}; } } constexpr auto begin() const requires forward_range<V> && forward_range<const V> { return outer-iterator<true>{*this, ranges::begin(base_)}; } constexpr auto end() requires forward_range<V> && common_range<V> { return outer-iterator<simple-view<V> && simple-view<Pattern>> {*this, ranges::end(base_)}; } constexpr auto end() const { if constexpr (forward_range<V> && forward_range<const V> && common_range<const V>) return outer-iterator<true>{*this, ranges::end(base_)}; else return default_sentinel; } }; template<class R, class P> lazy_split_view(R&&, P&&) -> lazy_split_view<views::all_t<R>, views::all_t<P>>; template<input_range R> lazy_split_view(R&&, range_value_t<R>) -> lazy_split_view<views::all_t<R>, single_view<range_value_t<R>>>; }
constexpr explicit lazy_split_view(V base, Pattern pattern);
Effects: Initializes base_ with std​::​move(base), and pattern_ with std​::​move(pattern).
template<input_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<R>>> constexpr explicit lazy_split_view(R&& r, range_value_t<R> e);
Effects: Initializes base_ with views​::​all(std​::​forward<R>(r)), and pattern_ with views​::​single(std​::​move(e)).

25.7.16.3 Class template lazy_split_view​::​outer-iterator [range.lazy.split.outer]

namespace std::ranges { template<input_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> && (forward_range<V> || tiny-range<Pattern>) template<bool Const> struct lazy_split_view<V, Pattern>::outer-iterator { private: using Parent = maybe-const<Const, lazy_split_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only Parent* parent_ = nullptr; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only, present only // if V models forward_range bool trailing_empty_ = false; // exposition only public: using iterator_concept = conditional_t<forward_range<Base>, forward_iterator_tag, input_iterator_tag>; using iterator_category = input_iterator_tag; // present only if Base // models forward_range // [range.lazy.split.outer.value], class lazy_split_view​::​outer-iterator​::​value_type struct value_type; using difference_type = range_difference_t<Base>; outer-iterator() = default; constexpr explicit outer-iterator(Parent& parent) requires (!forward_range<Base>); constexpr outer-iterator(Parent& parent, iterator_t<Base> current) requires forward_range<Base>; constexpr outer-iterator(outer-iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr value_type operator*() const; constexpr outer-iterator& operator++(); constexpr decltype(auto) operator++(int) { if constexpr (forward_range<Base>) { auto tmp = *this; ++*this; return tmp; } else ++*this; } friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y) requires forward_range<Base>; friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t); }; }
Many of the specifications in [range.lazy.split] refer to the notional member current of outer-iterator.
current is equivalent to current_ if V models forward_range, and *parent_->current_ otherwise.
constexpr explicit outer-iterator(Parent& parent) requires (!forward_range<Base>);
Effects: Initializes parent_ with addressof(parent).
constexpr outer-iterator(Parent& parent, iterator_t<Base> current) requires forward_range<Base>;
Effects: Initializes parent_ with addressof(parent) and current_ with std​::​move(current).
constexpr outer-iterator(outer-iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes parent_ with i.parent_, current_ with std​::​move(i.current_), and trailing_empty_ with i.trailing_empty_.
constexpr value_type operator*() const;
Effects: Equivalent to: return value_type{*this};
constexpr outer-iterator& operator++();
Effects: Equivalent to: const auto end = ranges::end(parent_->base_); if (current == end) { trailing_empty_ = false; return *this; } const auto [pbegin, pend] = subrange{parent_->pattern_}; if (pbegin == pend) ++current; else if constexpr (tiny-range<Pattern>) { current = ranges::find(std::move(current), end, *pbegin); if (current != end) { ++current; if (current == end) trailing_empty_ = true; } } else { do { auto [b, p] = ranges::mismatch(current, end, pbegin, pend); if (p == pend) { current = b; if (current == end) trailing_empty_ = true; break; // The pattern matched; skip it } } while (++current != end); } return *this;
friend constexpr bool operator==(const outer-iterator& x, const outer-iterator& y) requires forward_range<Base>;
Effects: Equivalent to: return x.current_ == y.current_ && x.trailing_empty_ == y.trailing_empty_;
friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);
Effects: Equivalent to: return x.current == ranges::end(x.parent_->base_) && !x.trailing_empty_;

25.7.16.4 Class lazy_split_view​::​outer-iterator​::​value_type [range.lazy.split.outer.value]

namespace std::ranges { template<input_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> && (forward_range<V> || tiny-range<Pattern>) template<bool Const> struct lazy_split_view<V, Pattern>::outer-iterator<Const>::value_type : view_interface<value_type> { private: outer-iterator i_ = outer-iterator(); // exposition only constexpr explicit value_type(outer-iterator i); // exposition only public: constexpr inner-iterator<Const> begin() const; constexpr default_sentinel_t end() const noexcept; }; }
constexpr explicit value_type(outer-iterator i);
Effects: Initializes i_ with std​::​move(i).
constexpr inner-iterator<Const> begin() const;
Effects: Equivalent to: return inner-iterator<Const>{i_};
constexpr default_sentinel_t end() const noexcept;
Effects: Equivalent to: return default_sentinel;

25.7.16.5 Class template lazy_split_view​::​inner-iterator [range.lazy.split.inner]

namespace std::ranges { template<input_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> && (forward_range<V> || tiny-range<Pattern>) template<bool Const> struct lazy_split_view<V, Pattern>::inner-iterator { private: using Base = maybe-const<Const, V>; // exposition only outer-iterator<Const> i_ = outer-iterator<Const>(); // exposition only bool incremented_ = false; // exposition only public: using iterator_concept = typename outer-iterator<Const>::iterator_concept; using iterator_category = see below; // present only if Base // models forward_range using value_type = range_value_t<Base>; using difference_type = range_difference_t<Base>; inner-iterator() = default; constexpr explicit inner-iterator(outer-iterator<Const> i); constexpr const iterator_t<Base>& base() const & noexcept; constexpr iterator_t<Base> base() && requires forward_range<V>; constexpr decltype(auto) operator*() const { return *i_.current; } constexpr inner-iterator& operator++(); constexpr decltype(auto) operator++(int) { if constexpr (forward_range<Base>) { auto tmp = *this; ++*this; return tmp; } else ++*this; } friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y) requires forward_range<Base>; friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t); friend constexpr decltype(auto) iter_move(const inner-iterator& i) noexcept(noexcept(ranges::iter_move(i.i_.current))) { return ranges::iter_move(i.i_.current); } friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y) noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current))) requires indirectly_swappable<iterator_t<Base>>; }; }
If Base does not model forward_range there is no member iterator_category.
Otherwise, the typedef-name iterator_category denotes:
  • forward_iterator_tag if iterator_traits<iterator_t<Base>>​::​iterator_category models derived_from<forward_iterator_tag>;
  • otherwise, iterator_traits<iterator_t<Base>>​::​iterator_category.
constexpr explicit inner-iterator(outer-iterator<Const> i);
Effects: Initializes i_ with std​::​move(i).
constexpr const iterator_t<Base>& base() const & noexcept;
Effects: Equivalent to: return i_.current;
constexpr iterator_t<Base> base() && requires forward_range<V>;
Effects: Equivalent to: return std​::​move(i_.current);
constexpr inner-iterator& operator++();
Effects: Equivalent to: incremented_ = true; if constexpr (!forward_range<Base>) { if constexpr (Pattern::size() == 0) { return *this; } } ++i_.current; return *this;
friend constexpr bool operator==(const inner-iterator& x, const inner-iterator& y) requires forward_range<Base>;
Effects: Equivalent to: return x.i_.current == y.i_.current;
friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);
Effects: Equivalent to: auto [pcur, pend] = subrange{x.i_.parent_->pattern_}; auto end = ranges::end(x.i_.parent_->base_); if constexpr (tiny-range<Pattern>) { const auto & cur = x.i_.current; if (cur == end) return true; if (pcur == pend) return x.incremented_; return *cur == *pcur; } else { auto cur = x.i_.current; if (cur == end) return true; if (pcur == pend) return x.incremented_; do { if (*cur != *pcur) return false; if (++pcur == pend) return true; } while (++cur != end); return false; }
friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y) noexcept(noexcept(ranges::iter_swap(x.i_.current, y.i_.current))) requires indirectly_swappable<iterator_t<Base>>;
Effects: Equivalent to ranges​::​iter_swap(x.i_.current, y.i_.current).

25.7.17 Split view [range.split]

25.7.17.1 Overview [range.split.overview]

split_view takes a view and a delimiter, and splits the view into subranges on the delimiter.
The delimiter can be a single element or a view of elements.
The name views​::​split denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​split(E, F) is expression-equivalent to split_view(E, F).
[Example 1: string str{"the quick brown fox"}; for (auto word : views::split(str, ' ')) { cout << string_view(word) << '*'; } // The above prints the*quick*brown*fox* — end example]

25.7.17.2 Class template split_view [range.split.view]

namespace std::ranges { template<forward_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> class split_view : public view_interface<split_view<V, Pattern>> { private: V base_ = V(); // exposition only Pattern pattern_ = Pattern(); // exposition only // [range.split.iterator], class split_view​::​iterator struct iterator; // exposition only // [range.split.sentinel], class split_view​::​sentinel struct sentinel; // exposition only public: split_view() requires default_initializable<V> && default_initializable<Pattern> = default; constexpr explicit split_view(V base, Pattern pattern); template<forward_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<R>>> constexpr explicit split_view(R&& r, range_value_t<R> e); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr iterator begin(); constexpr auto end() { if constexpr (common_range<V>) { return iterator{*this, ranges::end(base_), {}}; } else { return sentinel{*this}; } } constexpr subrange<iterator_t<V>> find-next(iterator_t<V>); // exposition only }; template<class R, class P> split_view(R&&, P&&) -> split_view<views::all_t<R>, views::all_t<P>>; template<forward_range R> split_view(R&&, range_value_t<R>) -> split_view<views::all_t<R>, single_view<range_value_t<R>>>; }
constexpr explicit split_view(V base, Pattern pattern);
Effects: Initializes base_ with std​::​move(base), and pattern_ with std​::​move(pattern).
template<forward_range R> requires constructible_from<V, views::all_t<R>> && constructible_from<Pattern, single_view<range_value_t<R>>> constexpr explicit split_view(R&& r, range_value_t<R> e);
Effects: Initializes base_ with views​::​all(std​::​forward<R>(r)), and pattern_ with views​::​single(std​::​move(e)).
constexpr iterator begin();
Returns: {*this, ranges​::​begin(base_), find-next(ranges​::​begin(base_))}.
Remarks: In order to provide the amortized constant time complexity required by the range concept, this function caches the result within the split_view for use on subsequent calls.
constexpr subrange<iterator_t<V>> find-next(iterator_t<V> it);
Effects: Equivalent to: auto [b, e] = ranges::search(subrange(it, ranges::end(base_)), pattern_); if (b != ranges::end(base_) && ranges::empty(pattern_)) { ++b; ++e; } return {b, e};

25.7.17.3 Class split_view​::​iterator [range.split.iterator]

namespace std::ranges { template<forward_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> class split_view<V, Pattern>::iterator { private: split_view* parent_ = nullptr; // exposition only iterator_t<V> cur_ = iterator_t<V>(); // exposition only subrange<iterator_t<V>> next_ = subrange<iterator_t<V>>(); // exposition only bool trailing_empty_ = false; // exposition only public: using iterator_concept = forward_iterator_tag; using iterator_category = input_iterator_tag; using value_type = subrange<iterator_t<V>>; using difference_type = range_difference_t<V>; iterator() = default; constexpr iterator(split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next); constexpr iterator_t<V> base() const; constexpr value_type operator*() const; constexpr iterator& operator++(); constexpr iterator operator++(int); friend constexpr bool operator==(const iterator& x, const iterator& y); }; }
constexpr iterator(split_view& parent, iterator_t<V> current, subrange<iterator_t<V>> next);
Effects: Initializes parent_ with addressof(parent), cur_ with std​::​move(current), and next_ with std​::​move(next).
constexpr iterator_t<V> base() const;
Effects: Equivalent to: return cur_;
constexpr value_type operator*() const;
Effects: Equivalent to: return {cur_, next_.begin()};
constexpr iterator& operator++();
Effects: Equivalent to: cur_ = next_.begin(); if (cur_ != ranges::end(parent_->base_)) { cur_ = next_.end(); if (cur_ == ranges::end(parent_->base_)) { trailing_empty_ = true; next_ = {cur_, cur_}; } else { next_ = parent_->find-next(cur_); } } else { trailing_empty_ = false; } return *this;
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y);
Effects: Equivalent to: return x.cur_ == y.cur_ && x.trailing_empty_ == y.trailing_empty_;

25.7.17.4 Class split_view​::​sentinel [range.split.sentinel]

namespace std::ranges { template<forward_range V, forward_range Pattern> requires view<V> && view<Pattern> && indirectly_comparable<iterator_t<V>, iterator_t<Pattern>, ranges::equal_to> struct split_view<V, Pattern>::sentinel { private: sentinel_t<V> end_ = sentinel_t<V>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(split_view& parent); friend constexpr bool operator==(const iterator& x, const sentinel& y); }; }
constexpr explicit sentinel(split_view& parent);
Effects: Initializes end_ with ranges​::​end(parent.base_).
friend constexpr bool operator==(const iterator& x, const sentinel& y);
Effects: Equivalent to: return x.cur_ == y.end_ && !x.trailing_empty_;

25.7.18 Concat view [range.concat]

25.7.18.1 Overview [range.concat.overview]

concat_view presents a view that concatenates all the underlying ranges.
The name views​::​concat denotes a customization point object ([customization.point.object]).
Given a pack of subexpressions Es..., the expression views​::​concat(Es...) is expression-equivalent to
  • views​::​all(Es...) if Es is a pack with only one element whose type models input_range,
  • otherwise, concat_view(Es...).
[Example 1: vector<int> v1{1, 2, 3}, v2{4, 5}, v3{}; array a{6, 7, 8}; auto s = views::single(9); for (auto&& i : views::concat(v1, v2, v3, a, s)) { print("{} ", i); // prints 1 2 3 4 5 6 7 8 9 } — end example]

25.7.18.2 Class template concat_view [range.concat.view]

namespace std::ranges { template<class... Rs> using concat-reference-t = common_reference_t<range_reference_t<Rs>...>; // exposition only template<class... Rs> using concat-value-t = common_type_t<range_value_t<Rs>...>; // exposition only template<class... Rs> using concat-rvalue-reference-t = // exposition only common_reference_t<range_rvalue_reference_t<Rs>...>; template<class... Rs> concept concat-indirectly-readable = see below; // exposition only template<class... Rs> concept concatable = see below; // exposition only template<bool Const, class... Rs> concept concat-is-random-access = see below; // exposition only template<bool Const, class... Rs> concept concat-is-bidirectional = see below; // exposition only template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && concatable<Views...> class concat_view : public view_interface<concat_view<Views...>> { tuple<Views...> views_; // exposition only // [range.concat.iterator], class template concat_view​::​iterator template<bool> class iterator; // exposition only public: constexpr concat_view() = default; constexpr explicit concat_view(Views... views); constexpr iterator<false> begin() requires (!(simple-view<Views> && ...)); constexpr iterator<true> begin() const requires (range<const Views> && ...) && concatable<const Views...>; constexpr auto end() requires (!(simple-view<Views> && ...)); constexpr auto end() const requires (range<const Views> && ...) && concatable<const Views...>; constexpr auto size() requires (sized_range<Views> && ...); constexpr auto size() const requires (sized_range<const Views> && ...); }; template<class... R> concat_view(R&&...) -> concat_view<views::all_t<R>...>; }
template<class... Rs> concept concat-indirectly-readable = see below; // exposition only
The exposition-only concat-indirectly-readable concept is equivalent to: template<class Ref, class RRef, class It> concept concat-indirectly-readable-impl = // exposition only requires (const It it) { { *it } -> convertible_to<Ref>; { ranges::iter_move(it) } -> convertible_to<RRef>; }; template<class... Rs> concept concat-indirectly-readable = // exposition only common_reference_with<concat-reference-t<Rs...>&&, concat-value-t<Rs...>&> && common_reference_with<concat-reference-t<Rs...>&&, concat-rvalue-reference-t<Rs...>&&> && common_reference_with<concat-rvalue-reference-t<Rs...>&&, concat-value-t<Rs...> const&> && (concat-indirectly-readable-impl<concat-reference-t<Rs...>, concat-rvalue-reference-t<Rs...>, iterator_t<Rs>> && ...);
template<class... Rs> concept concatable = see below; // exposition only
The exposition-only concatable concept is equivalent to: template<class... Rs> concept concatable = requires { // exposition only typename concat-reference-t<Rs...>; typename concat-value-t<Rs...>; typename concat-rvalue-reference-t<Rs...>; } && concat-indirectly-readable<Rs...>;
template<bool Const, class... Rs> concept concat-is-random-access = see below; // exposition only
Let Fs be the pack that consists of all elements of Rs except the last element, then concat-is-random-access is equivalent to: template<bool Const, class... Rs> concept concat-is-random-access = // exposition only all-random-access<Const, Rs...> && (common_range<maybe-const<Const, Fs>> && ...);
template<bool Const, class... Rs> concept concat-is-bidirectional = see below; // exposition only
Let Fs be the pack that consists of all elements of Rs except the last element, then concat-is-bidirectional is equivalent to: template<bool Const, class... Rs> concept concat-is-bidirectional = // exposition only all-bidirectional<Const, Rs...> && (common_range<maybe-const<Const, Fs>> && ...);
constexpr explicit concat_view(Views... views);
Effects: Initializes views_ with std​::​move(views)....
constexpr iterator<false> begin() requires (!(simple-view<Views> && ...)); constexpr iterator<true> begin() const requires (range<const Views> && ...) && concatable<const Views...>;
Effects: Let is-const be true for the const-qualified overload, and false otherwise.
Equivalent to: iterator<is-const> it(this, in_place_index<0>, ranges::begin(std::get<0>(views_))); it.template satisfy<0>(); return it;
constexpr auto end() requires (!(simple-view<Views> && ...)); constexpr auto end() const requires (range<const Views> && ...) && concatable<const Views...>;
Effects: Let is-const be true for the const-qualified overload, and false otherwise.
Equivalent to: constexpr auto N = sizeof...(Views); if constexpr (common_range<maybe-const<is-const, Views...[N - 1]>>) { return iterator<is-const>(this, in_place_index<N - 1>, ranges::end(std::get<N - 1>(views_))); } else { return default_sentinel; }
constexpr auto size() requires (sized_range<Views> && ...); constexpr auto size() const requires (sized_range<const Views> && ...);
Effects: Equivalent to: return apply( [](auto... sizes) { using CT = make-unsigned-like-t<common_type_t<decltype(sizes)...>>; return (CT(sizes) + ...); }, tuple-transform(ranges::size, views_));

25.7.18.3 Class concat_view​::​iterator [range.concat.iterator]

namespace std::ranges { template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && concatable<Views...> template<bool Const> class concat_view<Views...>::iterator { public: using iterator_category = see below; // not always present using iterator_concept = see below; using value_type = concat-value-t<maybe-const<Const, Views>...>; using difference_type = common_type_t<range_difference_t<maybe-const<Const, Views>>...>; private: using base-iter = // exposition only variant<iterator_t<maybe-const<Const, Views>>...>; maybe-const<Const, concat_view>* parent_ = nullptr; // exposition only base-iter it_; // exposition only template<size_t N> constexpr void satisfy(); // exposition only template<size_t N> constexpr void prev(); // exposition only template<size_t N> constexpr void advance-fwd(difference_type offset, // exposition only difference_type steps); template<size_t N> constexpr void advance-bwd(difference_type offset, // exposition only difference_type steps); template<class... Args> constexpr explicit iterator(maybe-const<Const, concat_view>* parent, // exposition only Args&&... args) requires constructible_from<base-iter, Args&&...>; public: iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...); constexpr decltype(auto) operator*() const; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires all-forward<Const, Views...>; constexpr iterator& operator--() requires concat-is-bidirectional<Const, Views...>; constexpr iterator operator--(int) requires concat-is-bidirectional<Const, Views...>; constexpr iterator& operator+=(difference_type n) requires concat-is-random-access<Const, Views...>; constexpr iterator& operator-=(difference_type n) requires concat-is-random-access<Const, Views...>; constexpr decltype(auto) operator[](difference_type n) const requires concat-is-random-access<Const, Views...>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...); friend constexpr bool operator==(const iterator& it, default_sentinel_t); friend constexpr bool operator<(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires (all-random-access<Const, Views...> && (three_way_comparable<iterator_t<maybe-const<Const, Views>>> && ...)); friend constexpr iterator operator+(const iterator& it, difference_type n) requires concat-is-random-access<Const, Views...>; friend constexpr iterator operator+(difference_type n, const iterator& it) requires concat-is-random-access<Const, Views...>; friend constexpr iterator operator-(const iterator& it, difference_type n) requires concat-is-random-access<Const, Views...>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires concat-is-random-access<Const, Views...>; friend constexpr difference_type operator-(const iterator& x, default_sentinel_t) requires see below; friend constexpr difference_type operator-(default_sentinel_t, const iterator& x) requires see below; friend constexpr decltype(auto) iter_move(const iterator& it) noexcept(see below); friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(see below) requires see below; }; }
iterator​::​iterator_concept is defined as follows:
  • If concat-is-random-access<Const, Views...> is modeled, then iterator_concept denotes random_access_iterator_tag.
  • Otherwise, if concat-is-bidirectional<Const, Views...> is modeled, then iterator_concept denotes bidirectional_iterator_tag.
  • Otherwise, if all-forward<Const, Views...> is modeled, then iterator_concept denotes forward_iterator_tag.
  • Otherwise, iterator_concept denotes input_iterator_tag.
The member typedef-name iterator_category is defined if and only if all-forward<Const, Views...> is modeled.
In that case, iterator​::​iterator_category is defined as follows:
  • If is_reference_v<concat-reference-t<maybe-const<Const, Views>...>> is false, then iterator_category denotes input_iterator_tag.
  • Otherwise, let Cs denote the pack of types iterator_traits<iterator_t<maybe-const<Const, Views>>>​::​iterator_category....
    • If (derived_from<Cs, random_access_iterator_tag> && ...) && concat-is-random-access<Const, Views...> is true, iterator_category denotes random_access_iterator_tag.
    • Otherwise, if (derived_from<Cs, bidirectional_iterator_tag> && ...) && concat-is-bidirectional<Const, Views...> is true, iterator_category denotes bidirectional_iterator_tag.
    • Otherwise, if (derived_from<Cs, forward_iterator_tag> && ...) is true, iterator_category denotes forward_iterator_tag.
    • Otherwise, iterator_category denotes input_iterator_tag.
template<size_t N> constexpr void satisfy();
Effects: Equivalent to: if constexpr (N < (sizeof...(Views) - 1)) { if (std::get<N>(it_) == ranges::end(std::get<N>(parent_->views_))) { it_.template emplace<N + 1>(ranges::begin(std::get<N + 1>(parent_->views_))); satisfy<N + 1>(); } }
template<size_t N> constexpr void prev();
Effects: Equivalent to: if constexpr (N == 0) { --std::get<0>(it_); } else { if (std::get<N>(it_) == ranges::begin(std::get<N>(parent_->views_))) { it_.template emplace<N - 1>(ranges::end(std::get<N - 1>(parent_->views_))); prev<N - 1>(); } else { --std::get<N>(it_); } }
template<size_t N> constexpr void advance-fwd(difference_type offset, difference_type steps);
Effects: Equivalent to: using underlying_diff_type = iter_difference_t<variant_alternative_t<N, base-iter>>; if constexpr (N == sizeof...(Views) - 1) { std::get<N>(it_) += static_cast<underlying_diff_type>(steps); } else { auto n_size = ranges::distance(std::get<N>(parent_->views_)); if (offset + steps < n_size) { std::get<N>(it_) += static_cast<underlying_diff_type>(steps); } else { it_.template emplace<N + 1>(ranges::begin(std::get<N + 1>(parent_->views_))); advance-fwd<N + 1>(0, offset + steps - n_size); } }
template<size_t N> constexpr void advance-bwd(difference_type offset, difference_type steps);
Effects: Equivalent to: using underlying_diff_type = iter_difference_t<variant_alternative_t<N, base-iter>>; if constexpr (N == 0) { std::get<N>(it_) -= static_cast<underlying_diff_type>(steps); } else { if (offset >= steps) { std::get<N>(it_) -= static_cast<underlying_diff_type>(steps); } else { auto prev_size = ranges::distance(std::get<N - 1>(parent_->views_)); it_.template emplace<N - 1>(ranges::end(std::get<N - 1>(parent_->views_))); advance-bwd<N - 1>(prev_size, steps - offset); } }
template<class... Args> constexpr explicit iterator(maybe-const<Const, concat_view>* parent, Args&&... args) requires constructible_from<base-iter, Args&&...>;
Effects: Initializes parent_ with parent, and initializes it_ with std​::​forward<Args>(args)....
constexpr iterator(iterator<!Const> it) requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...);
Preconditions: it.it_.valueless_by_exception() is false.
Effects: Initializes parent_ with it.parent_, and let i be it.it_.index(), initializes it_ with base-iter(in_place_index<i>, std​::​get<i>(std​::​move(it.it_))).
constexpr decltype(auto) operator*() const;
Preconditions: it_.valueless_by_exception() is false.
Effects: Equivalent to: using reference = concat-reference-t<maybe-const<Const, Views>...>; return std::visit([](auto&& it) -> reference { return *it; }, it_);
constexpr iterator& operator++();
Preconditions: it_.valueless_by_exception() is false.
Effects: Let i be it_.index().
Equivalent to: ++std::get<i>(it_); satisfy<i>(); return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++*this;
constexpr iterator operator++(int) requires all-forward<Const, Views...>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires concat-is-bidirectional<Const, Views...>;
Preconditions: it_.valueless_by_exception() is false.
Effects: Let i be it_.index().
Equivalent to: prev<i>(); return *this;
constexpr iterator operator--(int) requires concat-is-bidirectional<Const, Views...>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type n) requires concat-is-random-access<Const, Views...>;
Preconditions: it_.valueless_by_exception() is false.
Effects: Let i be it_.index().
Equivalent to: if (n > 0) { advance-fwd<i>(std::get<i>(it_) - ranges::begin(std::get<i>(parent_->views_)), n); } else if (n < 0) { advance-bwd<i>(std::get<i>(it_) - ranges::begin(std::get<i>(parent_->views_)), -n); } return *this;
constexpr iterator& operator-=(difference_type n) requires concat-is-random-access<Const, Views...>;
Effects: Equivalent to: *this += -n; return *this;
constexpr decltype(auto) operator[](difference_type n) const requires concat-is-random-access<Const, Views...>;
Effects: Equivalent to: return *((*this) + n);
friend constexpr bool operator==(const iterator& x, const iterator& y) requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...);
Preconditions: x.it_.valueless_by_exception() and y.it_.valueless_by_exception() are each false.
Effects: Equivalent to: return x.it_ == y.it_;
friend constexpr bool operator==(const iterator& it, default_sentinel_t);
Preconditions: it.it_.valueless_by_exception() is false.
Effects: Equivalent to: constexpr auto last_idx = sizeof...(Views) - 1; return it.it_.index() == last_idx && std::get<last_idx>(it.it_) == ranges::end(std::get<last_idx>(it.parent_->views_));
friend constexpr bool operator<(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires (all-random-access<Const, Views...> && (three_way_comparable<iterator_t<maybe-const<Const, Views>>> && ...));
Preconditions: x.it_.valueless_by_exception() and y.it_.valueless_by_exception() are each false.
Let op be the operator.
Effects: Equivalent to: return x.it_ op y.it_;
friend constexpr iterator operator+(const iterator& it, difference_type n) requires concat-is-random-access<Const, Views...>;
Effects: Equivalent to: auto temp = it; temp += n; return temp;
friend constexpr iterator operator+(difference_type n, const iterator& it) requires concat-is-random-access<Const, Views...>;
Effects: Equivalent to: return it + n;
friend constexpr iterator operator-(const iterator& it, difference_type n) requires concat-is-random-access<Const, Views...>;
Effects: Equivalent to: auto temp = it; temp -= n; return temp;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires concat-is-random-access<Const, Views...>;
Preconditions: x.it_.valueless_by_exception() and y.it_.valueless_by_exception() are each false.
Effects: Let denote x.it_.index() and denote y.it_.index().
  • If > , let be ranges​::​distance(std​::​get<>(y.it_), ranges​::​end(std​::​get<>(y.parent_->views_))), be ranges​::​distance(ranges​::​begin(std​::​get<>(x.parent_->views_)), std​::​get<>(x.it_)).
    Let s denote the sum of the sizes of all the ranges std​::​get<i>(x.parent_->views_) for every integer i in the range [ + 1, ) if there is any, and 0 otherwise, of type difference_type, equivalent to: return + s + ;
  • otherwise, if < is true, equivalent to: return -(y - x);
  • otherwise, equivalent to: return std::get<>(x.it_) - std::get<>(y.it_);
friend constexpr difference_type operator-(const iterator& x, default_sentinel_t) requires see below;
Preconditions: x.it_.valueless_by_exception() is false.
Effects: Let denote x.it_.index(), be ranges​::​distance(std​::​get<>(x.it_), ranges​::​end(std​::​get<>(x.parent_->views_))).
Let s denote the sum of the sizes of all the ranges std​::​get<i>(x.parent_->views_) for every integer i in the range [ + 1, sizeof...(Views)) if there is any, and 0 otherwise, of type difference_type, equivalent to: return -( + s);
Remarks: Let Fs be the pack that consists of all elements of Views except the first element, the expression in the requires-clause is equivalent to: (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<Const, Views>>> && ...) && (sized_range<maybe-const<Const, Fs>> && ...)
friend constexpr difference_type operator-(default_sentinel_t, const iterator& x) requires see below;
Effects: Equivalent to: return -(x - default_sentinel);
Remarks: Let Fs be the pack that consists of all elements of Views except the first element, the expression in the requires-clause is equivalent to: (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<Const, Views>>> && ...) && (sized_range<maybe-const<Const, Fs>> && ...)
friend constexpr decltype(auto) iter_move(const iterator& it) noexcept(see below);
Preconditions: it.it_.valueless_by_exception() is false.
Effects: Equivalent to: return std::visit([](const auto& i) -> concat-rvalue-reference-t<maybe-const<Const, Views>...> { return ranges::iter_move(i); }, it.it_);
Remarks: The exception specification is equivalent to: ((is_nothrow_invocable_v<decltype(ranges::iter_move), const iterator_t<maybe-const<Const, Views>>&> && is_nothrow_convertible_v<range_rvalue_reference_t<maybe-const<Const, Views>>, concat-rvalue-reference-t<maybe-const<Const, Views>...>>) && ...)
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(see below) requires see below;
Preconditions: x.it_.valueless_by_exception() and y.it_.valueless_by_exception() are each false.
Effects: Equivalent to: std::visit([&](const auto& it1, const auto& it2) { if constexpr (is_same_v<decltype(it1), decltype(it2)>) { ranges::iter_swap(it1, it2); } else { ranges::swap(*x, *y); } }, x.it_, y.it_);
Remarks: The exception specification is equivalent to (noexcept(ranges::swap(*x, *y)) && ... && noexcept(ranges::iter_swap(its, its))) where its is a pack of lvalues of type const iterator_t<maybe-const<Const, Views>> respectively.
The expression in the requires-clause is equivalent to swappable_with<iter_reference_t<iterator>, iter_reference_t<iterator>> && (... && indirectly_swappable<iterator_t<maybe-const<Const, Views>>>)

25.7.19 Counted view [range.counted]

A counted view presents a view of the elements of the counted range ([iterator.requirements.general]) for an iterator i and non-negative integer n.
The name views​::​counted denotes a customization point object ([customization.point.object]).
Let E and F be expressions, let T be decay_t<decltype((E))>, and let D be iter_difference_t<T>.
If decltype((F)) does not model convertible_to<D>, views​::​counted(E, F) is ill-formed.
[Note 1: 
This case can result in substitution failure when views​::​counted(E, F) appears in the immediate context of a template instantiation.
— end note]
Otherwise, views​::​counted(E, F) is expression-equivalent to:
  • If T models contiguous_iterator, then span(to_address(E), static_cast<size_t>(static_cast<D>(F))).
  • Otherwise, if T models random_access_iterator, then subrange(E, E + static_cast<D>(F)), except that E is evaluated only once.
  • Otherwise, subrange(counted_iterator(E, F), default_sentinel).

25.7.20 Common view [range.common]

25.7.20.1 Overview [range.common.overview]

common_view takes a view which has different types for its iterator and sentinel and turns it into a view of the same elements with an iterator and sentinel of the same type.
[Note 1: 
common_view is useful for calling legacy algorithms that expect a range's iterator and sentinel types to be the same.
— end note]
The name views​::​common denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​common(E) is expression-equivalent to:
  • views​::​all(E), if decltype((E)) models common_range and views​::​all(E) is a well-formed expression.
  • Otherwise, common_view{E}.
[Example 1: // Legacy algorithm: template<class ForwardIterator> size_t count(ForwardIterator first, ForwardIterator last); template<forward_range R> void my_algo(R&& r) { auto&& common = views::common(r); auto cnt = count(common.begin(), common.end()); // ... } — end example]

25.7.20.2 Class template common_view [range.common.view]

namespace std::ranges { template<view V> requires (!common_range<V> && copyable<iterator_t<V>>) class common_view : public view_interface<common_view<V>> { private: V base_ = V(); // exposition only public: common_view() requires default_initializable<V> = default; constexpr explicit common_view(V r); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { if constexpr (random_access_range<V> && sized_range<V>) return ranges::begin(base_); else return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::begin(base_)); } constexpr auto begin() const requires range<const V> { if constexpr (random_access_range<const V> && sized_range<const V>) return ranges::begin(base_); else return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::begin(base_)); } constexpr auto end() requires (!simple-view<V>) { if constexpr (random_access_range<V> && sized_range<V>) return ranges::begin(base_) + ranges::distance(base_); else return common_iterator<iterator_t<V>, sentinel_t<V>>(ranges::end(base_)); } constexpr auto end() const requires range<const V> { if constexpr (random_access_range<const V> && sized_range<const V>) return ranges::begin(base_) + ranges::distance(base_); else return common_iterator<iterator_t<const V>, sentinel_t<const V>>(ranges::end(base_)); } constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } }; template<class R> common_view(R&&) -> common_view<views::all_t<R>>; }
constexpr explicit common_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.21 Reverse view [range.reverse]

25.7.21.1 Overview [range.reverse.overview]

reverse_view takes a bidirectional view and produces another view that iterates the same elements in reverse order.
The name views​::​reverse denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​reverse(E) is expression-equivalent to:
  • If the type of E is a (possibly cv-qualified) specialization of reverse_view, then E.base().
  • Otherwise, if the type of E is cv subrange<reverse_iterator<I>, reverse_iterator<I>, K> for some iterator type I and value K of type subrange_kind,
    • if K is subrange_kind​::​sized, then subrange<I, I, K>(E.end().base(), E.begin().base(), E.size());
    • otherwise, subrange<I, I, K>(E.end().base(), E.begin().base()).
    However, in either case E is evaluated only once.
  • Otherwise, reverse_view{E}.
[Example 1: vector<int> is {0,1,2,3,4}; for (int i : is | views::reverse) cout << i << ' '; // prints 4 3 2 1 0 — end example]

25.7.21.2 Class template reverse_view [range.reverse.view]

namespace std::ranges { template<view V> requires bidirectional_range<V> class reverse_view : public view_interface<reverse_view<V>> { private: V base_ = V(); // exposition only public: reverse_view() requires default_initializable<V> = default; constexpr explicit reverse_view(V r); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr reverse_iterator<iterator_t<V>> begin(); constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>; constexpr auto begin() const requires common_range<const V>; constexpr reverse_iterator<iterator_t<V>> end(); constexpr auto end() const requires common_range<const V>; constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } }; template<class R> reverse_view(R&&) -> reverse_view<views::all_t<R>>; }
constexpr explicit reverse_view(V base);
Effects: Initializes base_ with std​::​move(base).
constexpr reverse_iterator<iterator_t<V>> begin();
Returns: make_reverse_iterator(ranges::next(ranges::begin(base_), ranges::end(base_)))
Remarks: In order to provide the amortized constant time complexity required by the range concept, this function caches the result within the reverse_view for use on subsequent calls.
constexpr reverse_iterator<iterator_t<V>> begin() requires common_range<V>; constexpr auto begin() const requires common_range<const V>;
Effects: Equivalent to: return make_reverse_iterator(ranges​::​end(base_));
constexpr reverse_iterator<iterator_t<V>> end(); constexpr auto end() const requires common_range<const V>;
Effects: Equivalent to: return make_reverse_iterator(ranges​::​begin(base_));

25.7.22 As const view [range.as.const]

25.7.22.1 Overview [range.as.const.overview]

as_const_view presents a view of an underlying sequence as constant.
That is, the elements of an as_const_view cannot be modified.
The name views​::​as_const denotes a range adaptor object ([range.adaptor.object]).
Let E be an expression, let T be decltype((E)), and let U be remove_cvref_t<T>.
The expression views​::​as_const(E) is expression-equivalent to:
  • If views​::​all_t<T> models constant_range, then views​::​all(E).
  • Otherwise, if U denotes empty_view<X> for some type X, then auto(views​::​empty<const X>).
  • Otherwise, if U denotes span<X, Extent> for some type X and some extent Extent, then span<const X, Extent>(E).
  • Otherwise, if U denotes ref_view<X> for some type X and const X models constant_range, then ref_view(static_cast<const X&>(E.base())).
  • Otherwise, if E is an lvalue, const U models constant_range, and U does not model view, then ref_view(static_cast<const U&>(E)).
  • Otherwise, as_const_view(E).
[Example 1: template<constant_range R> void cant_touch_this(R&&); vector<char> hammer = {'m', 'c'}; span<char> beat = hammer; cant_touch_this(views::as_const(beat)); // will not modify the elements of hammer — end example]

25.7.22.2 Class template as_const_view [range.as.const.view]

namespace std::ranges { template<view V> requires input_range<V> class as_const_view : public view_interface<as_const_view<V>> { V base_ = V(); // exposition only public: as_const_view() requires default_initializable<V> = default; constexpr explicit as_const_view(V base); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { return ranges::cbegin(base_); } constexpr auto begin() const requires range<const V> { return ranges::cbegin(base_); } constexpr auto end() requires (!simple-view<V>) { return ranges::cend(base_); } constexpr auto end() const requires range<const V> { return ranges::cend(base_); } constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } }; template<class R> as_const_view(R&&) -> as_const_view<views::all_t<R>>; }
constexpr explicit as_const_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.23 Elements view [range.elements]

25.7.23.1 Overview [range.elements.overview]

elements_view takes a view of tuple-like values and a size_t, and produces a view with a value-type of the element of the adapted view's value-type.
The name views​::​elements<N> denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E and constant expression N, the expression views​::​elements<N>(E) is expression-equivalent to elements_view<views​::​all_t<decltype((E))>, N>{E}.
[Example 1: auto historical_figures = map{ pair{"Lovelace"sv, 1815}, {"Turing"sv, 1912}, {"Babbage"sv, 1791}, {"Hamilton"sv, 1936} }; auto names = historical_figures | views::elements<0>; for (auto&& name : names) { cout << name << ' '; // prints Babbage Hamilton Lovelace Turing } auto birth_years = historical_figures | views::elements<1>; for (auto&& born : birth_years) { cout << born << ' '; // prints 1791 1936 1815 1912 } — end example]
keys_view is an alias for elements_view<R, 0>, and is useful for extracting keys from associative containers.
[Example 2: auto names = historical_figures | views::keys; for (auto&& name : names) { cout << name << ' '; // prints Babbage Hamilton Lovelace Turing } — end example]
values_view is an alias for elements_view<R, 1>, and is useful for extracting values from associative containers.
[Example 3: auto is_even = [](const auto x) { return x % 2 == 0; }; cout << ranges::count_if(historical_figures | views::values, is_even); // prints 2 — end example]

25.7.23.2 Class template elements_view [range.elements.view]

namespace std::ranges { template<class T, size_t N> concept has-tuple-element = // exposition only tuple-like<T> && N < tuple_size_v<T>; template<class T, size_t N> concept returnable-element = // exposition only is_reference_v<T> || move_constructible<tuple_element_t<N, T>>; template<input_range V, size_t N> requires view<V> && has-tuple-element<range_value_t<V>, N> && has-tuple-element<remove_reference_t<range_reference_t<V>>, N> && returnable-element<range_reference_t<V>, N> class elements_view : public view_interface<elements_view<V, N>> { public: elements_view() requires default_initializable<V> = default; constexpr explicit elements_view(V base); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { return iterator<false>(ranges::begin(base_)); } constexpr auto begin() const requires range<const V> { return iterator<true>(ranges::begin(base_)); } constexpr auto end() requires (!simple-view<V> && !common_range<V>) { return sentinel<false>{ranges::end(base_)}; } constexpr auto end() requires (!simple-view<V> && common_range<V>) { return iterator<false>{ranges::end(base_)}; } constexpr auto end() const requires range<const V> { return sentinel<true>{ranges::end(base_)}; } constexpr auto end() const requires common_range<const V> { return iterator<true>{ranges::end(base_)}; } constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } private: // [range.elements.iterator], class template elements_view​::​iterator template<bool> class iterator; // exposition only // [range.elements.sentinel], class template elements_view​::​sentinel template<bool> class sentinel; // exposition only V base_ = V(); // exposition only }; }
constexpr explicit elements_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.23.3 Class template elements_view​::​iterator [range.elements.iterator]

namespace std::ranges { template<input_range V, size_t N> requires view<V> && has-tuple-element<range_value_t<V>, N> && has-tuple-element<remove_reference_t<range_reference_t<V>>, N> && returnable-element<range_reference_t<V>, N> template<bool Const> class elements_view<V, N>::iterator { using Base = maybe-const<Const, V>; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only static constexpr decltype(auto) get-element(const iterator_t<Base>& i); // exposition only public: using iterator_concept = see below; using iterator_category = see below; // not always present using value_type = remove_cvref_t<tuple_element_t<N, range_value_t<Base>>>; using difference_type = range_difference_t<Base>; iterator() requires default_initializable<iterator_t<Base>> = default; constexpr explicit iterator(iterator_t<Base> current); constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr const iterator_t<Base>& base() const & noexcept; constexpr iterator_t<Base> base() &&; constexpr decltype(auto) operator*() const { return get-element(current_); } constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<Base>; constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base> { return get-element(current_ + n); } friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>; friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(const iterator& x, difference_type y) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type x, const iterator& y) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& x, difference_type y) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; }; }
The member typedef-name iterator_concept is defined as follows:
The member typedef-name iterator_category is defined if and only if Base models forward_range.
In that case, iterator_category is defined as follows: Let C denote the type iterator_traits<iterator_t<Base>>​::​iterator_category.
  • If std​::​get<N>(*current_) is an rvalue, iterator_category denotes input_iterator_tag.
  • Otherwise, if C models derived_from<random_access_iterator_tag>, iterator_category denotes random_access_iterator_tag.
  • Otherwise, iterator_category denotes C.
static constexpr decltype(auto) get-element(const iterator_t<Base>& i);
Effects: Equivalent to: if constexpr (is_reference_v<range_reference_t<Base>>) { return std::get<N>(*i); } else { using E = remove_cv_t<tuple_element_t<N, range_reference_t<Base>>>; return static_cast<E>(std::get<N>(*i)); }
constexpr explicit iterator(iterator_t<Base> current);
Effects: Initializes current_ with std​::​move(current).
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_).
constexpr const iterator_t<Base>& base() const & noexcept;
Effects: Equivalent to: return current_;
constexpr iterator_t<Base> base() &&;
Effects: Equivalent to: return std​::​move(current_);
constexpr iterator& operator++();
Effects: Equivalent to: ++current_; return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++current_.
constexpr iterator operator++(int) requires forward_range<Base>;
Effects: Equivalent to: auto temp = *this; ++current_; return temp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: --current_; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto temp = *this; --current_; return temp;
constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ += n; return *this;
constexpr iterator& operator-=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ -= n; return *this;
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<Base>;
Effects: Equivalent to: return x.current_ == y.current_;
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return x.current_ < y.current_;
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Effects: Equivalent to: return x.current_ <=> y.current_;
friend constexpr iterator operator+(const iterator& x, difference_type y) requires random_access_range<Base>;
Effects: Equivalent to: return iterator{x} += y;
friend constexpr iterator operator+(difference_type x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y + x;
friend constexpr iterator operator-(const iterator& x, difference_type y) requires random_access_range<Base>;
Effects: Equivalent to: return iterator{x} -= y;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.current_ - y.current_;

25.7.23.4 Class template elements_view​::​sentinel [range.elements.sentinel]

namespace std::ranges { template<input_range V, size_t N> requires view<V> && has-tuple-element<range_value_t<V>, N> && has-tuple-element<remove_reference_t<range_reference_t<V>>, N> && returnable-element<range_reference_t<V>, N> template<bool Const> class elements_view<V, N>::sentinel { private: using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only public: sentinel() = default; constexpr explicit sentinel(sentinel_t<Base> end); constexpr sentinel(sentinel<!Const> other) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr sentinel_t<Base> base() const; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& x, const iterator<OtherConst>& y); }; }
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> other) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(other.end_).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_;
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ == y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ - y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& x, const iterator<OtherConst>& y);
Effects: Equivalent to: return x.end_ - y.current_;

25.7.24 Enumerate view [range.enumerate]

25.7.24.1 Overview [range.enumerate.overview]

enumerate_view is a view whose elements represent both the position and value from a sequence of elements.
The name views​::​enumerate denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E, the expression views​::​enumerate(E) is expression-equivalent to enumerate_view<views​::​all_t<decltype((E))>>(E).
[Example 1: vector<int> vec{ 1, 2, 3 }; for (auto [index, value] : views::enumerate(vec)) cout << index << ":" << value << ' '; // prints 0:1 1:2 2:3 — end example]

25.7.24.2 Class template enumerate_view [range.enumerate.view]

namespace std::ranges { template<view V> requires range-with-movable-references<V> class enumerate_view : public view_interface<enumerate_view<V>> { V base_ = V(); // exposition only // [range.enumerate.iterator], class template enumerate_view​::​iterator template<bool Const> class iterator; // exposition only // [range.enumerate.sentinel], class template enumerate_view​::​sentinel template<bool Const> class sentinel; // exposition only public: constexpr enumerate_view() requires default_initializable<V> = default; constexpr explicit enumerate_view(V base); constexpr auto begin() requires (!simple-view<V>) { return iterator<false>(ranges::begin(base_), 0); } constexpr auto begin() const requires range-with-movable-references<const V> { return iterator<true>(ranges::begin(base_), 0); } constexpr auto end() requires (!simple-view<V>) { if constexpr (forward_range<V> && common_range<V> && sized_range<V>) return iterator<false>(ranges::end(base_), ranges::distance(base_)); else return sentinel<false>(ranges::end(base_)); } constexpr auto end() const requires range-with-movable-references<const V> { if constexpr (forward_range<const V> && common_range<const V> && sized_range<const V>) return iterator<true>(ranges::end(base_), ranges::distance(base_)); else return sentinel<true>(ranges::end(base_)); } constexpr auto size() requires sized_range<V> { return ranges::size(base_); } constexpr auto size() const requires sized_range<const V> { return ranges::size(base_); } constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } }; template<class R> enumerate_view(R&&) -> enumerate_view<views::all_t<R>>; }
constexpr explicit enumerate_view(V base);
Effects: Initializes base_ with std​::​move(base).

25.7.24.3 Class template enumerate_view​::​iterator [range.enumerate.iterator]

namespace std::ranges { template<view V> requires range-with-movable-references<V> template<bool Const> class enumerate_view<V>::iterator { using Base = maybe-const<Const, V>; // exposition only public: using iterator_category = input_iterator_tag; using iterator_concept = see below; using difference_type = range_difference_t<Base>; using value_type = tuple<difference_type, range_value_t<Base>>; private: using reference-type = // exposition only tuple<difference_type, range_reference_t<Base>>; iterator_t<Base> current_ = iterator_t<Base>(); // exposition only difference_type pos_ = 0; // exposition only constexpr explicit iterator(iterator_t<Base> current, difference_type pos); // exposition only public: iterator() requires default_initializable<iterator_t<Base>> = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr const iterator_t<Base>& base() const & noexcept; constexpr iterator_t<Base> base() &&; constexpr difference_type index() const noexcept; constexpr auto operator*() const { return reference-type(pos_, *current_); } constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<Base>; constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr auto operator[](difference_type n) const requires random_access_range<Base> { return reference-type(pos_ + n, current_[n]); } friend constexpr bool operator==(const iterator& x, const iterator& y) noexcept; friend constexpr strong_ordering operator<=>(const iterator& x, const iterator& y) noexcept; friend constexpr iterator operator+(const iterator& x, difference_type y) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type x, const iterator& y) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& x, difference_type y) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) noexcept; friend constexpr auto iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_)) && is_nothrow_move_constructible_v<range_rvalue_reference_t<Base>>) { return tuple<difference_type, range_rvalue_reference_t<Base>>(i.pos_, ranges::iter_move(i.current_)); } }; }
The member typedef-name iterator​::​iterator_concept is defined as follows:
constexpr explicit iterator(iterator_t<Base> current, difference_type pos);
Effects: Initializes current_ with std​::​move(current) and pos_ with pos.
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_) and pos_ with i.pos_.
constexpr const iterator_t<Base>& base() const & noexcept;
Effects: Equivalent to: return current_;
constexpr iterator_t<Base> base() &&;
Effects: Equivalent to: return std​::​move(current_);
constexpr difference_type index() const noexcept;
Effects: Equivalent to: return pos_;
constexpr iterator& operator++();
Effects: Equivalent to: ++current_; ++pos_; return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires forward_range<Base>;
Effects: Equivalent to: auto temp = *this; ++*this; return temp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: --current_; --pos_; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto temp = *this; --*this; return temp;
constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ += n; pos_ += n; return *this;
constexpr iterator& operator-=(difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: current_ -= n; pos_ -= n; return *this;
friend constexpr bool operator==(const iterator& x, const iterator& y) noexcept;
Effects: Equivalent to: return x.pos_ == y.pos_;
friend constexpr strong_ordering operator<=>(const iterator& x, const iterator& y) noexcept;
Effects: Equivalent to: return x.pos_ <=> y.pos_;
friend constexpr iterator operator+(const iterator& x, difference_type y) requires random_access_range<Base>;
Effects: Equivalent to: auto temp = x; temp += y; return temp;
friend constexpr iterator operator+(difference_type x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y + x;
friend constexpr iterator operator-(const iterator& x, difference_type y) requires random_access_range<Base>;
Effects: Equivalent to: auto temp = x; temp -= y; return temp;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) noexcept;
Effects: Equivalent to: return x.pos_ - y.pos_;

25.7.24.4 Class template enumerate_view​::​sentinel [range.enumerate.sentinel]

namespace std::ranges { template<view V> requires range-with-movable-references<V> template<bool Const> class enumerate_view<V>::sentinel { using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only constexpr explicit sentinel(sentinel_t<Base> end); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> other) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr sentinel_t<Base> base() const; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& x, const iterator<OtherConst>& y); }; }
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_ with std​::​move(end).
constexpr sentinel(sentinel<!Const> other) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(other.end_).
constexpr sentinel_t<Base> base() const;
Effects: Equivalent to: return end_;
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ == y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_ - y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& x, const iterator<OtherConst>& y);
Effects: Equivalent to: return x.end_ - y.current_;

25.7.25 Zip view [range.zip]

25.7.25.1 Overview [range.zip.overview]

zip_view takes any number of views and produces a view of tuples of references to the corresponding elements of the constituent views.
The name views​::​zip denotes a customization point object ([customization.point.object]).
Given a pack of subexpressions Es..., the expression views​::​zip(Es...) is expression-equivalent to
  • auto(views​::​empty<tuple<>>) if Es is an empty pack,
  • otherwise, zip_view<views​::​all_t<decltype((Es))>...>(Es...).
[Example 1: vector v = {1, 2}; list l = {'a', 'b', 'c'}; auto z = views::zip(v, l); range_reference_t<decltype(z)> f = z.front(); // f is a tuple<int&, char&> // that refers to the first element of v and l for (auto&& [x, y] : z) { cout << '(' << x << ", " << y << ") "; // prints (1, a) (2, b) } — end example]

25.7.25.2 Class template zip_view [range.zip.view]

namespace std::ranges { template<class... Rs> concept zip-is-common = // exposition only (sizeof...(Rs) == 1 && (common_range<Rs> && ...)) || (!(bidirectional_range<Rs> && ...) && (common_range<Rs> && ...)) || ((random_access_range<Rs> && ...) && (sized_range<Rs> && ...)); template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) class zip_view : public view_interface<zip_view<Views...>> { tuple<Views...> views_; // exposition only // [range.zip.iterator], class template zip_view​::​iterator template<bool> class iterator; // exposition only // [range.zip.sentinel], class template zip_view​::​sentinel template<bool> class sentinel; // exposition only public: zip_view() = default; constexpr explicit zip_view(Views... views); constexpr auto begin() requires (!(simple-view<Views> && ...)) { return iterator<false>(tuple-transform(ranges::begin, views_)); } constexpr auto begin() const requires (range<const Views> && ...) { return iterator<true>(tuple-transform(ranges::begin, views_)); } constexpr auto end() requires (!(simple-view<Views> && ...)) { if constexpr (!zip-is-common<Views...>) { return sentinel<false>(tuple-transform(ranges::end, views_)); } else if constexpr ((random_access_range<Views> && ...)) { return begin() + iter_difference_t<iterator<false>>(size()); } else { return iterator<false>(tuple-transform(ranges::end, views_)); } } constexpr auto end() const requires (range<const Views> && ...) { if constexpr (!zip-is-common<const Views...>) { return sentinel<true>(tuple-transform(ranges::end, views_)); } else if constexpr ((random_access_range<const Views> && ...)) { return begin() + iter_difference_t<iterator<true>>(size()); } else { return iterator<true>(tuple-transform(ranges::end, views_)); } } constexpr auto size() requires (sized_range<Views> && ...); constexpr auto size() const requires (sized_range<const Views> && ...); }; template<class... Rs> zip_view(Rs&&...) -> zip_view<views::all_t<Rs>...>; }
Two zip_view objects have the same underlying sequence if and only if the corresponding elements of views_ are equal ([concepts.equality]) and have the same underlying sequence.
[Note 1: 
In particular, comparison of iterators obtained from zip_view objects that do not have the same underlying sequence is not required to produce meaningful results ([iterator.concept.forward]).
— end note]
constexpr explicit zip_view(Views... views);
Effects: Initializes views_ with std​::​move(views)....
constexpr auto size() requires (sized_range<Views> && ...); constexpr auto size() const requires (sized_range<const Views> && ...);
Effects: Equivalent to: return apply([](auto... sizes) { using CT = make-unsigned-like-t<common_type_t<decltype(sizes)...>>; return ranges::min({CT(sizes)...}); }, tuple-transform(ranges::size, views_));

25.7.25.3 Class template zip_view​::​iterator [range.zip.iterator]

namespace std::ranges { template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) template<bool Const> class zip_view<Views...>::iterator { tuple<iterator_t<maybe-const<Const, Views>>...> current_; // exposition only constexpr explicit iterator(tuple<iterator_t<maybe-const<Const, Views>>...>); // exposition only public: using iterator_category = input_iterator_tag; // not always present using iterator_concept = see below; using value_type = tuple<range_value_t<maybe-const<Const, Views>>...>; using difference_type = common_type_t<range_difference_t<maybe-const<Const, Views>>...>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...); constexpr auto operator*() const; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires all-forward<Const, Views...>; constexpr iterator& operator--() requires all-bidirectional<Const, Views...>; constexpr iterator operator--(int) requires all-bidirectional<Const, Views...>; constexpr iterator& operator+=(difference_type x) requires all-random-access<Const, Views...>; constexpr iterator& operator-=(difference_type x) requires all-random-access<Const, Views...>; constexpr auto operator[](difference_type n) const requires all-random-access<Const, Views...>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...); friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires all-random-access<Const, Views...>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires all-random-access<Const, Views...>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires all-random-access<Const, Views...>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires (sized_sentinel_for<iterator_t<maybe-const<Const, Views>>, iterator_t<maybe-const<Const, Views>>> && ...); friend constexpr auto iter_move(const iterator& i) noexcept(see below); friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires (indirectly_swappable<iterator_t<maybe-const<Const, Views>>> && ...); }; }
iterator​::​iterator_concept is defined as follows:
  • If all-random-access<Const, Views...> is modeled, then iterator_concept denotes random_access_iterator_tag.
  • Otherwise, if all-bidirectional<Const, Views...> is modeled, then iterator_concept denotes bidirectional_iterator_tag.
  • Otherwise, if all-forward<Const, Views...> is modeled, then iterator_concept denotes forward_iterator_tag.
  • Otherwise, iterator_concept denotes input_iterator_tag.
iterator​::​iterator_category is present if and only if all-forward<Const, Views...> is modeled.
If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singular value.
constexpr explicit iterator(tuple<iterator_t<maybe-const<Const, Views>>...> current);
Effects: Initializes current_ with std​::​move(current).
constexpr iterator(iterator<!Const> i) requires Const && (convertible_to<iterator_t<Views>, iterator_t<const Views>> && ...);
Effects: Initializes current_ with std​::​move(i.current_).
constexpr auto operator*() const;
Effects: Equivalent to: return tuple-transform([](auto& i) -> decltype(auto) { return *i; }, current_);
constexpr iterator& operator++();
Effects: Equivalent to: tuple-for-each([](auto& i) { ++i; }, current_); return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires all-forward<Const, Views...>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires all-bidirectional<Const, Views...>;
Effects: Equivalent to: tuple-for-each([](auto& i) { --i; }, current_); return *this;
constexpr iterator operator--(int) requires all-bidirectional<Const, Views...>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires all-random-access<Const, Views...>;
Effects: Equivalent to: tuple-for-each([&]<class I>(I& i) { i += iter_difference_t<I>(x); }, current_); return *this;
constexpr iterator& operator-=(difference_type x) requires all-random-access<Const, Views...>;
Effects: Equivalent to: tuple-for-each([&]<class I>(I& i) { i -= iter_difference_t<I>(x); }, current_); return *this;
constexpr auto operator[](difference_type n) const requires all-random-access<Const, Views...>;
Effects: Equivalent to: return tuple-transform([&]<class I>(I& i) -> decltype(auto) { return i[iter_difference_t<I>(n)]; }, current_);
friend constexpr bool operator==(const iterator& x, const iterator& y) requires (equality_comparable<iterator_t<maybe-const<Const, Views>>> && ...);
Returns:
  • x.current_ == y.current_ if all-bidirectional<Const, Views...> is true.
  • Otherwise, true if there exists an integer such that bool(std​::​​get<i>(x.current_) == std​::​get<i>(y.current_)) is true.
    [Note 1: 
    This allows zip_view to model common_range when all constituent views model common_range.
    — end note]
  • Otherwise, false.
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires all-random-access<Const, Views...>;
Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n) requires all-random-access<Const, Views...>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires all-random-access<Const, Views...>;
Effects: Equivalent to: auto r = i; r += n; return r;
friend constexpr iterator operator-(const iterator& i, difference_type n) requires all-random-access<Const, Views...>;
Effects: Equivalent to: auto r = i; r -= n; return r;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires (sized_sentinel_for<iterator_t<maybe-const<Const, Views>>, iterator_t<maybe-const<Const, Views>>> && ...);
Let DIST(i) be difference_type(std​::​get<i>(x.current_) - std​::​get<i>(y.current_)).
Returns: The value with the smallest absolute value among DIST(n) for all integers .
friend constexpr auto iter_move(const iterator& i) noexcept(see below);
Effects: Equivalent to: return tuple-transform(ranges::iter_move, i.current_);
Remarks: The exception specification is equivalent to: (noexcept(ranges::iter_move(declval<const iterator_t<maybe-const<Const, Views>>&>())) && ...) && (is_nothrow_move_constructible_v<range_rvalue_reference_t<maybe-const<Const, Views>>> && ...)
friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires (indirectly_swappable<iterator_t<maybe-const<Const, Views>>> && ...);
Effects: For every integer , performs: ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))
Remarks: The exception specification is equivalent to the logical and of the following expressions: noexcept(ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))) for every integer .

25.7.25.4 Class template zip_view​::​sentinel [range.zip.sentinel]

namespace std::ranges { template<input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) template<bool Const> class zip_view<Views...>::sentinel { tuple<sentinel_t<maybe-const<Const, Views>>...> end_; // exposition only constexpr explicit sentinel(tuple<sentinel_t<maybe-const<Const, Views>>...> end); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> i) requires Const && (convertible_to<sentinel_t<Views>, sentinel_t<const Views>> && ...); template<bool OtherConst> requires (sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...> operator-(const sentinel& y, const iterator<OtherConst>& x); }; }
constexpr explicit sentinel(tuple<sentinel_t<maybe-const<Const, Views>>...> end);
Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i) requires Const && (convertible_to<sentinel_t<Views>, sentinel_t<const Views>> && ...);
Effects: Initializes end_ with std​::​move(i.end_).
template<bool OtherConst> requires (sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Returns: true if there exists an integer such that bool(std​::​get<i>(x.current_) == std​::​get<i>(y.end_)) is true.
Otherwise, false.
template<bool OtherConst> requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...> operator-(const iterator<OtherConst>& x, const sentinel& y);
Let D be the return type.
Let DIST(i) be D(std​::​get<i>(x.current_) - std​::​get<i>(y.end_)).
Returns: The value with the smallest absolute value among DIST(n) for all integers .
template<bool OtherConst> requires (sized_sentinel_for<sentinel_t<maybe-const<Const, Views>>, iterator_t<maybe-const<OtherConst, Views>>> && ...) friend constexpr common_type_t<range_difference_t<maybe-const<OtherConst, Views>>...> operator-(const sentinel& y, const iterator<OtherConst>& x);
Effects: Equivalent to: return -(x - y);

25.7.26 Zip transform view [range.zip.transform]

25.7.26.1 Overview [range.zip.transform.overview]

zip_transform_view takes an invocable object and any number of views and produces a view whose element is the result of applying the invocable object to the elements of all views.
The name views​::​zip_transform denotes a customization point object ([customization.point.object]).
Let F be a subexpression, and let Es... be a pack of subexpressions.
  • If Es is an empty pack, let FD be decay_t<decltype((F))>.
    • If move_constructible<FD> && regular_invocable<FD&> is false, or if decay_t<invoke_result_t<FD&>> is not an object type, views​::​zip_transform(F, Es...) is ill-formed.
    • Otherwise, the expression views​::​zip_transform(F, Es...) is expression-equivalent to ((void)F, auto(views::empty<decay_t<invoke_result_t<FD&>>>))
  • Otherwise, the expression views​::​zip_transform(F, Es...) is expression-equivalent to zip_transform_view(F, Es...).
[Example 1: vector v1 = {1, 2}; vector v2 = {4, 5, 6}; for (auto i : views::zip_transform(plus(), v1, v2)) { cout << i << ' '; // prints 5 7 } — end example]

25.7.26.2 Class template zip_transform_view [range.zip.transform.view]

namespace std::ranges { template<move_constructible F, input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> && regular_invocable<F&, range_reference_t<Views>...> && can-reference<invoke_result_t<F&, range_reference_t<Views>...>> class zip_transform_view : public view_interface<zip_transform_view<F, Views...>> { movable-box<F> fun_; // exposition only zip_view<Views...> zip_; // exposition only using InnerView = zip_view<Views...>; // exposition only template<bool Const> using ziperator = iterator_t<maybe-const<Const, InnerView>>; // exposition only template<bool Const> using zentinel = sentinel_t<maybe-const<Const, InnerView>>; // exposition only // [range.zip.transform.iterator], class template zip_transform_view​::​iterator template<bool> class iterator; // exposition only // [range.zip.transform.sentinel], class template zip_transform_view​::​sentinel template<bool> class sentinel; // exposition only public: zip_transform_view() = default; constexpr explicit zip_transform_view(F fun, Views... views); constexpr auto begin() { return iterator<false>(*this, zip_.begin()); } constexpr auto begin() const requires range<const InnerView> && regular_invocable<const F&, range_reference_t<const Views>...> { return iterator<true>(*this, zip_.begin()); } constexpr auto end() { if constexpr (common_range<InnerView>) { return iterator<false>(*this, zip_.end()); } else { return sentinel<false>(zip_.end()); } } constexpr auto end() const requires range<const InnerView> && regular_invocable<const F&, range_reference_t<const Views>...> { if constexpr (common_range<const InnerView>) { return iterator<true>(*this, zip_.end()); } else { return sentinel<true>(zip_.end()); } } constexpr auto size() requires sized_range<InnerView> { return zip_.size(); } constexpr auto size() const requires sized_range<const InnerView> { return zip_.size(); } }; template<class F, class... Rs> zip_transform_view(F, Rs&&...) -> zip_transform_view<F, views::all_t<Rs>...>; }
constexpr explicit zip_transform_view(F fun, Views... views);
Effects: Initializes fun_ with std​::​move(fun) and zip_ with std​::​move(views)....

25.7.26.3 Class template zip_transform_view​::​iterator [range.zip.transform.iterator]

namespace std::ranges { template<move_constructible F, input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> && regular_invocable<F&, range_reference_t<Views>...> && can-reference<invoke_result_t<F&, range_reference_t<Views>...>> template<bool Const> class zip_transform_view<F, Views...>::iterator { using Parent = maybe-const<Const, zip_transform_view>; // exposition only using Base = maybe-const<Const, InnerView>; // exposition only Parent* parent_ = nullptr; // exposition only ziperator<Const> inner_; // exposition only constexpr iterator(Parent& parent, ziperator<Const> inner); // exposition only public: using iterator_category = see below; // not always present using iterator_concept = typename ziperator<Const>::iterator_concept; using value_type = remove_cvref_t<invoke_result_t<maybe-const<Const, F>&, range_reference_t<maybe-const<Const, Views>>...>>; using difference_type = range_difference_t<Base>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<ziperator<false>, ziperator<Const>>; constexpr decltype(auto) operator*() const noexcept(see below); constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<Base>; constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<ziperator<Const>>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<ziperator<Const>, ziperator<Const>>; }; }
The member typedef-name iterator​::​iterator_category is defined if and only if Base models forward_range.
In that case, iterator​::​iterator_category is defined as follows:
  • If invoke_result_t<maybe-const<Const, F>&, range_reference_t<maybe-const<Const, Views>>...> is not a reference, iterator_category denotes input_iterator_tag.
  • Otherwise, let Cs denote the pack of types iterator_traits<iterator_t<maybe-const<Const, Views>>>​::​iterator_category....
    • If (derived_from<Cs, random_access_iterator_tag> && ...) is true, iterator_category denotes random_access_iterator_tag.
    • Otherwise, if (derived_from<Cs, bidirectional_iterator_tag> && ...) is true, iterator_category denotes bidirectional_iterator_tag.
    • Otherwise, if (derived_from<Cs, forward_iterator_tag> && ...) is true, iterator_category denotes forward_iterator_tag.
    • Otherwise, iterator_category denotes input_iterator_tag.
constexpr iterator(Parent& parent, ziperator<Const> inner);
Effects: Initializes parent_ with addressof(parent) and inner_ with std​::​move(inner).
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<ziperator<false>, ziperator<Const>>;
Effects: Initializes parent_ with i.parent_ and inner_ with std​::​move(i.inner_).
constexpr decltype(auto) operator*() const noexcept(see below);
Effects: Equivalent to: return apply([&](const auto&... iters) -> decltype(auto) { return invoke(*parent_->fun_, *iters...); }, inner_.current_);
Remarks: Let Is be the pack 0, 1, …, (sizeof...(Views)-1).
The exception specification is equivalent to: noexcept(invoke(*parent_->fun_, *std​::​get<Is>(inner_.current_)...)).
constexpr iterator& operator++();
Effects: Equivalent to: ++inner_; return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++*this.
constexpr iterator operator++(int) requires forward_range<Base>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: --inner_; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: inner_ += x; return *this;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: inner_ -= x; return *this;
constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base>;
Effects: Equivalent to: return apply([&]<class... Is>(const Is&... iters) -> decltype(auto) { return invoke(*parent_->fun_, iters[iter_difference_t<Is>(n)]...); }, inner_.current_);
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<ziperator<Const>>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Let op be the operator.
Effects: Equivalent to: return x.inner_ op y.inner_;
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: return iterator(*i.parent_, i.inner_ + n);
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: return iterator(*i.parent_, i.inner_ - n);
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<ziperator<Const>, ziperator<Const>>;
Effects: Equivalent to: return x.inner_ - y.inner_;

25.7.26.4 Class template zip_transform_view​::​sentinel [range.zip.transform.sentinel]

namespace std::ranges { template<move_constructible F, input_range... Views> requires (view<Views> && ...) && (sizeof...(Views) > 0) && is_object_v<F> && regular_invocable<F&, range_reference_t<Views>...> && can-reference<invoke_result_t<F&, range_reference_t<Views>...>> template<bool Const> class zip_transform_view<F, Views...>::sentinel { zentinel<Const> inner_; // exposition only constexpr explicit sentinel(zentinel<Const> inner); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<zentinel<false>, zentinel<Const>>; template<bool OtherConst> requires sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const sentinel& x, const iterator<OtherConst>& y); }; }
constexpr explicit sentinel(zentinel<Const> inner);
Effects: Initializes inner_ with inner.
constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<zentinel<false>, zentinel<Const>>;
Effects: Initializes inner_ with std​::​move(i.inner_).
template<bool OtherConst> requires sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.inner_ == y.inner_;
template<bool OtherConst> requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<zentinel<Const>, ziperator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const sentinel& x, const iterator<OtherConst>& y);
Effects: Equivalent to: return x.inner_ - y.inner_;

25.7.27 Adjacent view [range.adjacent]

25.7.27.1 Overview [range.adjacent.overview]

adjacent_view takes a view and produces a view whose element is a tuple of references to the through elements of the original view.
If the original view has fewer than N elements, the resulting view is empty.
The name views​::​adjacent<N> denotes a range adaptor object ([range.adaptor.object]).
Given a subexpression E and a constant expression N, the expression views​::​adjacent<N>(E) is expression-equivalent to
  • ((void)E, auto(views​::​empty<tuple<>>)) if N is equal to 0 and decltype((E)) models forward_range,
  • otherwise, adjacent_view<views​::​all_t<decltype((E))>, N>(E).
[Example 1: vector v = {1, 2, 3, 4}; for (auto i : v | views::adjacent<2>) { cout << "(" << std::get<0>(i) << ", " << std::get<1>(i) << ") "; // prints (1, 2) (2, 3) (3, 4) } — end example]
Define REPEAT(T, N) as a pack of N types, each of which denotes the same type as T.

25.7.27.2 Class template adjacent_view [range.adjacent.view]

namespace std::ranges { template<forward_range V, size_t N> requires view<V> && (N > 0) class adjacent_view : public view_interface<adjacent_view<V, N>> { V base_ = V(); // exposition only // [range.adjacent.iterator], class template adjacent_view​::​iterator template<bool> class iterator; // exposition only // [range.adjacent.sentinel], class template adjacent_view​::​sentinel template<bool> class sentinel; // exposition only struct as-sentinel{}; // exposition only public: adjacent_view() requires default_initializable<V> = default; constexpr explicit adjacent_view(V base); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { return iterator<false>(ranges::begin(base_), ranges::end(base_)); } constexpr auto begin() const requires range<const V> { return iterator<true>(ranges::begin(base_), ranges::end(base_)); } constexpr auto end() requires (!simple-view<V>) { if constexpr (common_range<V>) { return iterator<false>(as-sentinel{}, ranges::begin(base_), ranges::end(base_)); } else { return sentinel<false>(ranges::end(base_)); } } constexpr auto end() const requires range<const V> { if constexpr (common_range<const V>) { return iterator<true>(as-sentinel{}, ranges::begin(base_), ranges::end(base_)); } else { return sentinel<true>(ranges::end(base_)); } } constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>; }; }
constexpr explicit adjacent_view(V base);
Effects: Initializes base_ with std​::​move(base).
constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>;
Effects: Equivalent to: using ST = decltype(ranges::size(base_)); using CT = common_type_t<ST, size_t>; auto sz = static_cast<CT>(ranges::size(base_)); sz -= std::min<CT>(sz, N - 1); return static_cast<ST>(sz);

25.7.27.3 Class template adjacent_view​::​iterator [range.adjacent.iterator]

namespace std::ranges { template<forward_range V, size_t N> requires view<V> && (N > 0) template<bool Const> class adjacent_view<V, N>::iterator { using Base = maybe-const<Const, V>; // exposition only array<iterator_t<Base>, N> current_ = array<iterator_t<Base>, N>(); // exposition only constexpr iterator(iterator_t<Base> first, sentinel_t<Base> last); // exposition only constexpr iterator(as-sentinel, iterator_t<Base> first, iterator_t<Base> last); // exposition only public: using iterator_category = input_iterator_tag; using iterator_concept = see below; using value_type = tuple<REPEAT(range_value_t<Base>, N)...>; using difference_type = range_difference_t<Base>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr auto operator*() const; constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr auto operator[](difference_type n) const requires random_access_range<Base>; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; friend constexpr auto iter_move(const iterator& i) noexcept(see below); friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires indirectly_swappable<iterator_t<Base>>; }; }
iterator​::​iterator_concept is defined as follows:
If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singular value.
constexpr iterator(iterator_t<Base> first, sentinel_t<Base> last);
Postconditions: current_[0] == first is true, and for every integer , current_[i] == ranges​::​next(current_[i-1], 1, last) is true.
constexpr iterator(as-sentinel, iterator_t<Base> first, iterator_t<Base> last);
Postconditions: If Base does not model bidirectional_range, each element of current_ is equal to last.
Otherwise, current_[N-1] == last is true, and for every integer , current_[i] == ranges​::​prev(current_[i+1], 1, first) is true.
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes each element of current_ with the corresponding element of i.current_ as an xvalue.
constexpr auto operator*() const;
Effects: Equivalent to: return tuple-transform([](auto& i) -> decltype(auto) { return *i; }, current_);
constexpr iterator& operator++();
Preconditions: current_.back() is incrementable.
Postconditions: Each element of current_ is equal to ranges​::​next(i), where i is the value of that element before the call.
Returns: *this.
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Preconditions: current_.front() is decrementable.
Postconditions: Each element of current_ is equal to ranges​::​prev(i), where i is the value of that element before the call.
Returns: *this.
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
Preconditions: current_.back() + x has well-defined behavior.
Postconditions: Each element of current_ is equal to i + x, where i is the value of that element before the call.
Returns: *this.
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Preconditions: current_.front() - x has well-defined behavior.
Postconditions: Each element of current_ is equal to i - x, where i is the value of that element before the call.
Returns: *this.
constexpr auto operator[](difference_type n) const requires random_access_range<Base>;
Effects: Equivalent to: return tuple-transform([&](auto& i) -> decltype(auto) { return i[n]; }, current_);
friend constexpr bool operator==(const iterator& x, const iterator& y);
Returns: x.current_.back() == y.current_.back().
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Returns: x.current_.back() < y.current_.back().
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Returns: x.current_.back() <=> y.current_.back().
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r += n; return r;
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r -= n; return r;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return x.current_.back() - y.current_.back();
friend constexpr auto iter_move(const iterator& i) noexcept(see below);
Effects: Equivalent to: return tuple-transform(ranges​::​iter_move, i.current_);
Remarks: The exception specification is equivalent to: noexcept(ranges::iter_move(declval<const iterator_t<Base>&>())) && is_nothrow_move_constructible_v<range_rvalue_reference_t<Base>>
friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires indirectly_swappable<iterator_t<Base>>;
Preconditions: None of the iterators in l.current_ is equal to an iterator in r.current_.
Effects: For every integer , performs ranges​::​iter_swap(l.current_[i], r.current_[i]).
Remarks: The exception specification is equivalent to: noexcept(ranges::iter_swap(declval<iterator_t<Base>>(), declval<iterator_t<Base>>()))

25.7.27.4 Class template adjacent_view​::​sentinel [range.adjacent.sentinel]

namespace std::ranges { template<forward_range V, size_t N> requires view<V> && (N > 0) template<bool Const> class adjacent_view<V, N>::sentinel { using Base = maybe-const<Const, V>; // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only constexpr explicit sentinel(sentinel_t<Base> end); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>; template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& y, const iterator<OtherConst>& x); }; }
constexpr explicit sentinel(sentinel_t<Base> end);
Effects: Initializes end_ with end.
constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes end_ with std​::​move(i.end_).
template<bool OtherConst> requires sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_.back() == y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.current_.back() - y.end_;
template<bool OtherConst> requires sized_sentinel_for<sentinel_t<Base>, iterator_t<maybe-const<OtherConst, V>>> friend constexpr range_difference_t<maybe-const<OtherConst, V>> operator-(const sentinel& y, const iterator<OtherConst>& x);
Effects: Equivalent to: return y.end_ - x.current_.back();

25.7.28 Adjacent transform view [range.adjacent.transform]

25.7.28.1 Overview [range.adjacent.transform.overview]

adjacent_transform_view takes an invocable object and a view and produces a view whose element is the result of applying the invocable object to the through elements of the original view.
If the original view has fewer than N elements, the resulting view is empty.
The name views​::​adjacent_transform<N> denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F and a constant expression N:
  • If N is equal to 0 and decltype((E)) models forward_range, views​::​adjacent_transform<N>(E, F) is expression-equivalent to ((void)E, views​::​zip_transform(F)), except that the evaluations of E and F are indeterminately sequenced.
  • Otherwise, the expression views​::​adjacent_transform<N>(E, F) is expression-equivalent to adjacent_transform_view<views​::​all_t<decltype((E))>, decay_t<decltype((F))>, N>(E, F).
[Example 1: vector v = {1, 2, 3, 4}; for (auto i : v | views::adjacent_transform<2>(std::multiplies())) { cout << i << ' '; // prints 2 6 12 } — end example]

25.7.28.2 Class template adjacent_transform_view [range.adjacent.transform.view]

namespace std::ranges { template<forward_range V, move_constructible F, size_t N> requires view<V> && (N > 0) && is_object_v<F> && regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> && can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>> class adjacent_transform_view : public view_interface<adjacent_transform_view<V, F, N>> { movable-box<F> fun_; // exposition only adjacent_view<V, N> inner_; // exposition only using InnerView = adjacent_view<V, N>; // exposition only template<bool Const> using inner-iterator = iterator_t<maybe-const<Const, InnerView>>; // exposition only template<bool Const> using inner-sentinel = sentinel_t<maybe-const<Const, InnerView>>; // exposition only // [range.adjacent.transform.iterator], class template adjacent_transform_view​::​iterator template<bool> class iterator; // exposition only // [range.adjacent.transform.sentinel], class template adjacent_transform_view​::​sentinel template<bool> class sentinel; // exposition only public: adjacent_transform_view() = default; constexpr explicit adjacent_transform_view(V base, F fun); constexpr V base() const & requires copy_constructible<V> { return inner_.base(); } constexpr V base() && { return std::move(inner_).base(); } constexpr auto begin() { return iterator<false>(*this, inner_.begin()); } constexpr auto begin() const requires range<const InnerView> && regular_invocable<const F&, REPEAT(range_reference_t<const V>, N)...> { return iterator<true>(*this, inner_.begin()); } constexpr auto end() { if constexpr (common_range<InnerView>) { return iterator<false>(*this, inner_.end()); } else { return sentinel<false>(inner_.end()); } } constexpr auto end() const requires range<const InnerView> && regular_invocable<const F&, REPEAT(range_reference_t<const V>, N)...> { if constexpr (common_range<const InnerView>) { return iterator<true>(*this, inner_.end()); } else { return sentinel<true>(inner_.end()); } } constexpr auto size() requires sized_range<InnerView> { return inner_.size(); } constexpr auto size() const requires sized_range<const InnerView> { return inner_.size(); } }; }
constexpr explicit adjacent_transform_view(V base, F fun);
Effects: Initializes fun_ with std​::​move(fun) and inner_ with std​::​move(base).

25.7.28.3 Class template adjacent_transform_view​::​iterator [range.adjacent.transform.iterator]

namespace std::ranges { template<forward_range V, move_constructible F, size_t N> requires view<V> && (N > 0) && is_object_v<F> && regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> && can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>> template<bool Const> class adjacent_transform_view<V, F, N>::iterator { using Parent = maybe-const<Const, adjacent_transform_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only Parent* parent_ = nullptr; // exposition only inner-iterator<Const> inner_; // exposition only constexpr iterator(Parent& parent, inner-iterator<Const> inner); // exposition only public: using iterator_category = see below; using iterator_concept = typename inner-iterator<Const>::iterator_concept; using value_type = remove_cvref_t<invoke_result_t<maybe-const<Const, F>&, REPEAT(range_reference_t<Base>, N)...>>; using difference_type = range_difference_t<Base>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<inner-iterator<false>, inner-iterator<Const>>; constexpr decltype(auto) operator*() const noexcept(see below); constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base>; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<inner-iterator<Const>>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<inner-iterator<Const>, inner-iterator<Const>>; }; }
The member typedef-name iterator​::​iterator_category is defined as follows:
  • If invoke_result_t<maybe-const<Const, F>&, REPEAT(range_reference_t<Base>, N)...> is not a reference, iterator_category denotes input_iterator_tag.
  • Otherwise, let C denote the type iterator_traits<iterator_t<Base>>​::​iterator_category.
    • If derived_from<C, random_access_iterator_tag> is true, iterator_category denotes random_access_iterator_tag.
    • Otherwise, if derived_from<C, bidirectional_iterator_tag> is true, iterator_category denotes bidirectional_iterator_tag.
    • Otherwise, if derived_from<C, forward_iterator_tag> is true, iterator_category denotes forward_iterator_tag.
    • Otherwise, iterator_category denotes input_iterator_tag.
constexpr iterator(Parent& parent, inner-iterator<Const> inner);
Effects: Initializes parent_ with addressof(parent) and inner_ with std​::​move(inner).
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<inner-iterator<false>, inner-iterator<Const>>;
Effects: Initializes parent_ with i.parent_ and inner_ with std​::​move(i.inner_).
constexpr decltype(auto) operator*() const noexcept(see below);
Effects: Equivalent to: return apply([&](const auto&... iters) -> decltype(auto) { return invoke(*parent_->fun_, *iters...); }, inner_.current_);
Remarks: Let Is be the pack 0, 1, …, (N-1).
The exception specification is equivalent to: noexcept(invoke(*parent_->fun_, *std::get<Is>(inner_.current_)...))
constexpr iterator& operator++();
Effects: Equivalent to: ++inner_; return *this;
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: --inner_; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: inner_ += x; return *this;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: inner_ -= x; return *this;
constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base>;
Effects: Equivalent to: return apply([&](const auto&... iters) -> decltype(auto) { return invoke(*parent_->fun_, iters[n]...); }, inner_.current_);
friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<inner-iterator<Const>>;
Let op be the operator.
Effects: Equivalent to: return x.inner_ op y.inner_;
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: return iterator(*i.parent_, i.inner_ + n);
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: return iterator(*i.parent_, i.inner_ - n);
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<inner-iterator<Const>, inner-iterator<Const>>;
Effects: Equivalent to: return x.inner_ - y.inner_;

25.7.28.4 Class template adjacent_transform_view​::​sentinel [range.adjacent.transform.sentinel]

namespace std::ranges { template<forward_range V, move_constructible F, size_t N> requires view<V> && (N > 0) && is_object_v<F> && regular_invocable<F&, REPEAT(range_reference_t<V>, N)...> && can-reference<invoke_result_t<F&, REPEAT(range_reference_t<V>, N)...>> template<bool Const> class adjacent_transform_view<V, F, N>::sentinel { inner-sentinel<Const> inner_; // exposition only constexpr explicit sentinel(inner-sentinel<Const> inner); // exposition only public: sentinel() = default; constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<inner-sentinel<false>, inner-sentinel<Const>>; template<bool OtherConst> requires sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const sentinel& x, const iterator<OtherConst>& y); }; }
constexpr explicit sentinel(inner-sentinel<Const> inner);
Effects: Initializes inner_ with inner.
constexpr sentinel(sentinel<!Const> i) requires Const && convertible_to<inner-sentinel<false>, inner-sentinel<Const>>;
Effects: Initializes inner_ with std​::​move(i.inner_).
template<bool OtherConst> requires sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr bool operator==(const iterator<OtherConst>& x, const sentinel& y);
Effects: Equivalent to: return x.inner_ == y.inner_;
template<bool OtherConst> requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const iterator<OtherConst>& x, const sentinel& y); template<bool OtherConst> requires sized_sentinel_for<inner-sentinel<Const>, inner-iterator<OtherConst>> friend constexpr range_difference_t<maybe-const<OtherConst, InnerView>> operator-(const sentinel& x, const iterator<OtherConst>& y);
Effects: Equivalent to: return x.inner_ - y.inner_;

25.7.29 Chunk view [range.chunk]

25.7.29.1 Overview [range.chunk.overview]

chunk_view takes a view and a number N and produces a range of views that are N-sized non-overlapping successive chunks of the elements of the original view, in order.
The last view in the range can have fewer than N elements.
The name views​::​chunk denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and N, the expression views​::​chunk(E, N) is expression-equivalent to chunk_view(E, N).
[Example 1: vector v = {1, 2, 3, 4, 5}; for (auto r : v | views::chunk(2)) { cout << '['; auto sep = ""; for (auto i : r) { cout << sep << i; sep = ", "; } cout << "] "; } // The above prints [1, 2] [3, 4] [5] — end example]

25.7.29.2 Class template chunk_view for input ranges [range.chunk.view.input]

namespace std::ranges { template<class I> constexpr I div-ceil(I num, I denom) { // exposition only I r = num / denom; if (num % denom) ++r; return r; } template<view V> requires input_range<V> class chunk_view : public view_interface<chunk_view<V>> { V base_; // exposition only range_difference_t<V> n_; // exposition only range_difference_t<V> remainder_ = 0; // exposition only non-propagating-cache<iterator_t<V>> current_; // exposition only // [range.chunk.outer.iter], class chunk_view​::​outer-iterator class outer-iterator; // exposition only // [range.chunk.inner.iter], class chunk_view​::​inner-iterator class inner-iterator; // exposition only public: constexpr explicit chunk_view(V base, range_difference_t<V> n); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr outer-iterator begin(); constexpr default_sentinel_t end() const noexcept; constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>; }; template<class R> chunk_view(R&&, range_difference_t<R>) -> chunk_view<views::all_t<R>>; }
constexpr explicit chunk_view(V base, range_difference_t<V> n);
Preconditions: n > 0 is true.
Effects: Initializes base_ with std​::​move(base) and n_ with n.
constexpr outer-iterator begin();
Effects: Equivalent to: current_ = ranges::begin(base_); remainder_ = n_; return outer-iterator(*this);
constexpr default_sentinel_t end() const noexcept;
Returns: default_sentinel.
constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>;
Effects: Equivalent to: return to-unsigned-like(div-ceil(ranges::distance(base_), n_));

25.7.29.3 Class chunk_view​::​outer-iterator [range.chunk.outer.iter]

namespace std::ranges { template<view V> requires input_range<V> class chunk_view<V>::outer-iterator { chunk_view* parent_; // exposition only constexpr explicit outer-iterator(chunk_view& parent); // exposition only public: using iterator_concept = input_iterator_tag; using difference_type = range_difference_t<V>; // [range.chunk.outer.value], class chunk_view​::​outer-iterator​::​value_type struct value_type; outer-iterator(outer-iterator&&) = default; outer-iterator& operator=(outer-iterator&&) = default; constexpr value_type operator*() const; constexpr outer-iterator& operator++(); constexpr void operator++(int); friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t); friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; friend constexpr difference_type operator-(const outer-iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; }; }
constexpr explicit outer-iterator(chunk_view& parent);
Effects: Initializes parent_ with addressof(parent).
constexpr value_type operator*() const;
Preconditions: *this == default_sentinel is false.
Returns: value_type(*parent_).
constexpr outer-iterator& operator++();
Preconditions: *this == default_sentinel is false.
Effects: Equivalent to: ranges::advance(*parent_->current_, parent_->remainder_, ranges::end(parent_->base_)); parent_->remainder_ = parent_->n_; return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
friend constexpr bool operator==(const outer-iterator& x, default_sentinel_t);
Effects: Equivalent to: return *x.parent_->current_ == ranges::end(x.parent_->base_) && x.parent_->remainder_ != 0;
friend constexpr difference_type operator-(default_sentinel_t y, const outer-iterator& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Effects: Equivalent to: const auto dist = ranges::end(x.parent_->base_) - *x.parent_->current_; if (dist < x.parent_->remainder_) { return dist == 0 ? 0 : 1; } return div-ceil(dist - x.parent_->remainder_, x.parent_->n_) + 1;
friend constexpr difference_type operator-(const outer-iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Effects: Equivalent to: return -(y - x);

25.7.29.4 Class chunk_view​::​outer-iterator​::​value_type [range.chunk.outer.value]

namespace std::ranges { template<view V> requires input_range<V> struct chunk_view<V>::outer-iterator::value_type : view_interface<value_type> { private: chunk_view* parent_; // exposition only constexpr explicit value_type(chunk_view& parent); // exposition only public: constexpr inner-iterator begin() const noexcept; constexpr default_sentinel_t end() const noexcept; constexpr auto size() const requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; }; }
constexpr explicit value_type(chunk_view& parent);
Effects: Initializes parent_ with addressof(parent).
constexpr inner-iterator begin() const noexcept;
Returns: inner-iterator(*parent_).
constexpr default_sentinel_t end() const noexcept;
Returns: default_sentinel.
constexpr auto size() const requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Effects: Equivalent to: return to-unsigned-like(ranges::min(parent_->remainder_, ranges::end(parent_->base_) - *parent_->current_));

25.7.29.5 Class chunk_view​::​inner-iterator [range.chunk.inner.iter]

namespace std::ranges { template<view V> requires input_range<V> class chunk_view<V>::inner-iterator { chunk_view* parent_; // exposition only constexpr explicit inner-iterator(chunk_view& parent) noexcept; // exposition only public: using iterator_concept = input_iterator_tag; using difference_type = range_difference_t<V>; using value_type = range_value_t<V>; inner-iterator(inner-iterator&&) = default; inner-iterator& operator=(inner-iterator&&) = default; constexpr const iterator_t<V>& base() const &; constexpr range_reference_t<V> operator*() const; constexpr inner-iterator& operator++(); constexpr void operator++(int); friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t); friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; friend constexpr difference_type operator-(const inner-iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; friend constexpr range_rvalue_reference_t<V> iter_move(const inner-iterator& i) noexcept(noexcept(ranges::iter_move(*i.parent_->current_))); friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y) noexcept(noexcept(ranges::iter_swap(*x.parent_->current_, *y.parent_->current_))) requires indirectly_swappable<iterator_t<V>>; }; }
constexpr explicit inner-iterator(chunk_view& parent) noexcept;
Effects: Initializes parent_ with addressof(parent).
constexpr const iterator_t<V>& base() const &;
Effects: Equivalent to: return *parent_->current_;
constexpr range_reference_t<V> operator*() const;
Preconditions: *this == default_sentinel is false.
Effects: Equivalent to: return **parent_->current_;
constexpr inner-iterator& operator++();
Preconditions: *this == default_sentinel is false.
Effects: Equivalent to: ++*parent_->current_; if (*parent_->current_ == ranges::end(parent_->base_)) parent_->remainder_ = 0; else --parent_->remainder_; return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
friend constexpr bool operator==(const inner-iterator& x, default_sentinel_t);
Returns: x.parent_->remainder_ == 0.
friend constexpr difference_type operator-(default_sentinel_t y, const inner-iterator& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Effects: Equivalent to: return ranges::min(x.parent_->remainder_, ranges::end(x.parent_->base_) - *x.parent_->current_);
friend constexpr difference_type operator-(const inner-iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Effects: Equivalent to: return -(y - x);
friend constexpr range_rvalue_reference_t<V> iter_move(const inner-iterator& i) noexcept(noexcept(ranges::iter_move(*i.parent_->current_)));
Effects: Equivalent to: return ranges​::​iter_move(*i.parent_->current_);
friend constexpr void iter_swap(const inner-iterator& x, const inner-iterator& y) noexcept(noexcept(ranges::iter_swap(*x.parent_->current_, *y.parent_->current_))) requires indirectly_swappable<iterator_t<V>>;
Effects: Equivalent to: ranges​::​iter_swap(*x.parent_->current_, *y.parent_->current_);

25.7.29.6 Class template chunk_view for forward ranges [range.chunk.view.fwd]

namespace std::ranges { template<view V> requires forward_range<V> class chunk_view<V> : public view_interface<chunk_view<V>> { V base_; // exposition only range_difference_t<V> n_; // exposition only // [range.chunk.fwd.iter], class template chunk_view​::​iterator template<bool> class iterator; // exposition only public: constexpr explicit chunk_view(V base, range_difference_t<V> n); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!simple-view<V>) { return iterator<false>(this, ranges::begin(base_)); } constexpr auto begin() const requires forward_range<const V> { return iterator<true>(this, ranges::begin(base_)); } constexpr auto end() requires (!simple-view<V>) { if constexpr (common_range<V> && sized_range<V>) { auto missing = (n_ - ranges::distance(base_) % n_) % n_; return iterator<false>(this, ranges::end(base_), missing); } else if constexpr (common_range<V> && !bidirectional_range<V>) { return iterator<false>(this, ranges::end(base_)); } else { return default_sentinel; } } constexpr auto end() const requires forward_range<const V> { if constexpr (common_range<const V> && sized_range<const V>) { auto missing = (n_ - ranges::distance(base_) % n_) % n_; return iterator<true>(this, ranges::end(base_), missing); } else if constexpr (common_range<const V> && !bidirectional_range<const V>) { return iterator<true>(this, ranges::end(base_)); } else { return default_sentinel; } } constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>; }; }
constexpr explicit chunk_view(V base, range_difference_t<V> n);
Preconditions: n > 0 is true.
Effects: Initializes base_ with std​::​move(base) and n_ with n.
constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>;
Effects: Equivalent to: return to-unsigned-like(div-ceil(ranges::distance(base_), n_));

25.7.29.7 Class template chunk_view​::​iterator for forward ranges [range.chunk.fwd.iter]

namespace std::ranges { template<view V> requires forward_range<V> template<bool Const> class chunk_view<V>::iterator { using Parent = maybe-const<Const, chunk_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only range_difference_t<Base> n_ = 0; // exposition only range_difference_t<Base> missing_ = 0; // exposition only constexpr iterator(Parent* parent, iterator_t<Base> current, // exposition only range_difference_t<Base> missing = 0); public: using iterator_category = input_iterator_tag; using iterator_concept = see below; using value_type = decltype(views::take(subrange(current_, end_), n_)); using difference_type = range_difference_t<Base>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>> && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr iterator_t<Base> base() const; constexpr value_type operator*() const; constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr value_type operator[](difference_type n) const requires random_access_range<Base>; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator==(const iterator& x, default_sentinel_t); friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>; friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>; }; }
iterator​::​iterator_concept is defined as follows:
constexpr iterator(Parent* parent, iterator_t<Base> current, range_difference_t<Base> missing = 0);
Effects: Initializes current_ with current, end_ with ranges​::​end(parent->base_), n_ with parent->n_, and missing_ with missing.
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>> && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_), end_ with std​::​move(i.end_), n_ with i.n_, and missing_ with i.missing_.
constexpr iterator_t<Base> base() const;
Returns: current_.
constexpr value_type operator*() const;
Preconditions: current_ != end_ is true.
Returns: views​::​take(subrange(current_, end_), n_).
constexpr iterator& operator++();
Preconditions: current_ != end_ is true.
Effects: Equivalent to: missing_ = ranges::advance(current_, n_, end_); return *this;
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: ranges::advance(current_, missing_ - n_); missing_ = 0; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
Preconditions: If x is positive, ranges​::​distance(current_, end_) > n_ * (x - 1) is true.
[Note 1: 
If x is negative, the Effects paragraph implies a precondition.
— end note]
Effects: Equivalent to: if (x > 0) { ranges::advance(current_, n_ * (x - 1)); missing_ = ranges::advance(current_, n_, end_); } else if (x < 0) { ranges::advance(current_, n_ * x + missing_); missing_ = 0; } return *this;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: return *this += -x;
constexpr value_type operator[](difference_type n) const requires random_access_range<Base>;
Returns: *(*this + n).
friend constexpr bool operator==(const iterator& x, const iterator& y);
Returns: x.current_ == y.current_.
friend constexpr bool operator==(const iterator& x, default_sentinel_t);
Returns: x.current_ == x.end_.
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Returns: x.current_ < y.current_.
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r += n; return r;
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r -= n; return r;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Returns: (x.current_ - y.current_ + x.missing_ - y.missing_) / x.n_.
friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Returns: div-ceil(x.end_ - x.current_, x.n_).
friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return -(y - x);

25.7.30 Slide view [range.slide]

25.7.30.1 Overview [range.slide.overview]

slide_view takes a view and a number N and produces a view whose element is a view over the through elements of the original view.
If the original view has fewer than N elements, the resulting view is empty.
The name views​::​slide denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and N, the expression views​::​slide(E, N) is expression-equivalent to slide_view(E, N).
[Example 1: vector v = {1, 2, 3, 4}; for (auto i : v | views::slide(2)) { cout << '[' << i[0] << ", " << i[1] << "] "; // prints [1, 2] [2, 3] [3, 4] } — end example]

25.7.30.2 Class template slide_view [range.slide.view]

namespace std::ranges { template<class V> concept slide-caches-nothing = random_access_range<V> && sized_range<V>; // exposition only template<class V> concept slide-caches-last = // exposition only !slide-caches-nothing<V> && bidirectional_range<V> && common_range<V>; template<class V> concept slide-caches-first = // exposition only !slide-caches-nothing<V> && !slide-caches-last<V>; template<forward_range V> requires view<V> class slide_view : public view_interface<slide_view<V>> { V base_; // exposition only range_difference_t<V> n_; // exposition only // [range.slide.iterator], class template slide_view​::​iterator template<bool> class iterator; // exposition only // [range.slide.sentinel], class slide_view​::​sentinel class sentinel; // exposition only public: constexpr explicit slide_view(V base, range_difference_t<V> n); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr auto begin() requires (!(simple-view<V> && slide-caches-nothing<const V>)); constexpr auto begin() const requires slide-caches-nothing<const V>; constexpr auto end() requires (!(simple-view<V> && slide-caches-nothing<const V>)); constexpr auto end() const requires slide-caches-nothing<const V>; constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>; }; template<class R> slide_view(R&&, range_difference_t<R>) -> slide_view<views::all_t<R>>; }
constexpr explicit slide_view(V base, range_difference_t<V> n);
Preconditions: n > 0 is true.
Effects: Initializes base_ with std​::​move(base) and n_ with n.
constexpr auto begin() requires (!(simple-view<V> && slide-caches-nothing<const V>));
Returns:
  • If V models slide-caches-first, iterator<false>(ranges::begin(base_), ranges::next(ranges::begin(base_), n_ - 1, ranges::end(base_)), n_)
  • Otherwise, iterator<false>(ranges​::​begin(base_), n_).
Remarks: In order to provide the amortized constant-time complexity required by the range concept, this function caches the result within the slide_view for use on subsequent calls when V models slide-caches-first.
constexpr auto begin() const requires slide-caches-nothing<const V>;
Returns: iterator<true>(ranges​::​begin(base_), n_).
constexpr auto end() requires (!(simple-view<V> && slide-caches-nothing<const V>));
Returns:
  • If V models slide-caches-nothing, iterator<false>(ranges::begin(base_) + range_difference_t<V>(size()), n_)
  • Otherwise, if V models slide-caches-last, iterator<false>(ranges::prev(ranges::end(base_), n_ - 1, ranges::begin(base_)), n_)
  • Otherwise, if V models common_range, iterator<false>(ranges::end(base_), ranges::end(base_), n_)
  • Otherwise, sentinel(ranges​::​end(base_)).
Remarks: In order to provide the amortized constant-time complexity required by the range concept, this function caches the result within the slide_view for use on subsequent calls when V models slide-caches-last.
constexpr auto end() const requires slide-caches-nothing<const V>;
Returns: begin() + range_difference_t<const V>(size()).
constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>;
Effects: Equivalent to: auto sz = ranges::distance(base_) - n_ + 1; if (sz < 0) sz = 0; return to-unsigned-like(sz);

25.7.30.3 Class template slide_view​::​iterator [range.slide.iterator]

namespace std::ranges { template<forward_range V> requires view<V> template<bool Const> class slide_view<V>::iterator { using Base = maybe-const<Const, V>; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only iterator_t<Base> last_ele_ = iterator_t<Base>(); // exposition only, // present only if Base models slide-caches-first range_difference_t<Base> n_ = 0; // exposition only constexpr iterator(iterator_t<Base> current, range_difference_t<Base> n) // exposition only requires (!slide-caches-first<Base>); constexpr iterator(iterator_t<Base> current, iterator_t<Base> last_ele, // exposition only range_difference_t<Base> n) requires slide-caches-first<Base>; public: using iterator_category = input_iterator_tag; using iterator_concept = see below; using value_type = decltype(views::counted(current_, n_)); using difference_type = range_difference_t<Base>; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>; constexpr auto operator*() const; constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>; constexpr auto operator[](difference_type n) const requires random_access_range<Base>; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; }; }
iterator​::​iterator_concept is defined as follows:
If the invocation of any non-const member function of iterator exits via an exception, the iterator acquires a singular value.
constexpr iterator(iterator_t<Base> current, range_difference_t<Base> n) requires (!slide-caches-first<Base>);
Effects: Initializes current_ with current and n_ with n.
constexpr iterator(iterator_t<Base> current, iterator_t<Base> last_ele, range_difference_t<Base> n) requires slide-caches-first<Base>;
Effects: Initializes current_ with current, last_ele_ with last_ele, and n_ with n.
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_) and n_ with i.n_.
[Note 1: 
iterator<true> can only be formed when Base models slide-caches-nothing, in which case last_ele_ is not present.
— end note]
constexpr auto operator*() const;
Returns: views​::​counted(current_, n_).
constexpr iterator& operator++();
Preconditions: current_ and last_ele_ (if present) are incrementable.
Postconditions: current_ and last_ele_ (if present) are each equal to ranges​::​next(i), where i is the value of that data member before the call.
Returns: *this.
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Preconditions: current_ and last_ele_ (if present) are decrementable.
Postconditions: current_ and last_ele_ (if present) are each equal to ranges​::​prev(i), where i is the value of that data member before the call.
Returns: *this.
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires random_access_range<Base>;
Preconditions: current_ + x and last_ele_ + x (if last_ele_ is present) have well-defined behavior.
Postconditions: current_ and last_ele_ (if present) are each equal to i + x, where i is the value of that data member before the call.
Returns: *this.
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Preconditions: current_ - x and last_ele_ - x (if last_ele_ is present) have well-defined behavior.
Postconditions: current_ and last_ele_ (if present) are each equal to i - x, where i is the value of that data member before the call.
Returns: *this.
constexpr auto operator[](difference_type n) const requires random_access_range<Base>;
Effects: Equivalent to: return views​::​counted(current_ + n, n_);
friend constexpr bool operator==(const iterator& x, const iterator& y);
Returns: If last_ele_ is present, x.last_ele_ == y.last_ele_; otherwise, x.current_ == y.current_.
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Returns: x.current_ < y.current_.
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r += n; return r;
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r -= n; return r;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Returns: If last_ele_ is present, x.last_ele_ - y.last_ele_; otherwise, x.current_ - y.current_.

25.7.30.4 Class slide_view​::​sentinel [range.slide.sentinel]

namespace std::ranges { template<forward_range V> requires view<V> class slide_view<V>::sentinel { sentinel_t<V> end_ = sentinel_t<V>(); // exposition only constexpr explicit sentinel(sentinel_t<V> end); // exposition only public: sentinel() = default; friend constexpr bool operator==(const iterator<false>& x, const sentinel& y); friend constexpr range_difference_t<V> operator-(const iterator<false>& x, const sentinel& y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; friend constexpr range_difference_t<V> operator-(const sentinel& y, const iterator<false>& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>; }; }
[Note 1: 
sentinel is used only when slide-caches-first<V> is true.
— end note]
constexpr explicit sentinel(sentinel_t<V> end);
Effects: Initializes end_ with end.
friend constexpr bool operator==(const iterator<false>& x, const sentinel& y);
Returns: x.last_ele_ == y.end_.
friend constexpr range_difference_t<V> operator-(const iterator<false>& x, const sentinel& y) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Returns: x.last_ele_ - y.end_.
friend constexpr range_difference_t<V> operator-(const sentinel& y, const iterator<false>& x) requires sized_sentinel_for<sentinel_t<V>, iterator_t<V>>;
Returns: y.end_ - x.last_ele_.

25.7.31 Chunk by view [range.chunk.by]

25.7.31.1 Overview [range.chunk.by.overview]

chunk_by_view takes a view and a predicate, and splits the view into subranges between each pair of adjacent elements for which the predicate returns false.
The name views​::​chunk_by denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and F, the expression views​::​chunk_by(E, F) is expression-equivalent to chunk_by_view(E, F).
[Example 1: vector v = {1, 2, 2, 3, 0, 4, 5, 2}; for (auto r : v | views::chunk_by(ranges::less_equal{})) { cout << '['; auto sep = ""; for (auto i : r) { cout << sep << i; sep = ", "; } cout << "] "; } // The above prints [1, 2, 2, 3] [0, 4, 5] [2] — end example]

25.7.31.2 Class template chunk_by_view [range.chunk.by.view]

namespace std::ranges { template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class chunk_by_view : public view_interface<chunk_by_view<V, Pred>> { V base_ = V(); // exposition only movable-box<Pred> pred_; // exposition only // [range.chunk.by.iter], class chunk_by_view​::​iterator class iterator; // exposition only public: chunk_by_view() requires default_initializable<V> && default_initializable<Pred> = default; constexpr explicit chunk_by_view(V base, Pred pred); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr const Pred& pred() const; constexpr iterator begin(); constexpr auto end(); constexpr iterator_t<V> find-next(iterator_t<V>); // exposition only constexpr iterator_t<V> find-prev(iterator_t<V>) // exposition only requires bidirectional_range<V>; }; template<class R, class Pred> chunk_by_view(R&&, Pred) -> chunk_by_view<views::all_t<R>, Pred>; }
constexpr explicit chunk_by_view(V base, Pred pred);
Effects: Initializes base_ with std​::​move(base) and pred_ with std​::​move(pred).
constexpr const Pred& pred() const;
Effects: Equivalent to: return *pred_;
constexpr iterator begin();
Preconditions: pred_.has_value() is true.
Returns: iterator(*this, ranges​::​begin(base_), find-next(ranges​::​begin(base_))).
Remarks: In order to provide the amortized constant-time complexity required by the range concept, this function caches the result within the chunk_by_view for use on subsequent calls.
constexpr auto end();
Effects: Equivalent to: if constexpr (common_range<V>) { return iterator(*this, ranges::end(base_), ranges::end(base_)); } else { return default_sentinel; }
constexpr iterator_t<V> find-next(iterator_t<V> current);
Preconditions: pred_.has_value() is true.
Returns: ranges::next(ranges::adjacent_find(current, ranges::end(base_), not_fn(ref(*pred_))), 1, ranges::end(base_))
constexpr iterator_t<V> find-prev(iterator_t<V> current) requires bidirectional_range<V>;
Preconditions:
  • current is not equal to ranges​::​begin(base_).
  • pred_.has_value() is true.
Returns: An iterator i in the range [ranges​::​begin(base_), current) such that:
  • ranges​::​adjacent_find(i, current, not_fn(ref(*pred_))) is equal to current; and
  • if i is not equal to ranges​::​begin(base_), then bool(invoke(*pred_, *ranges​::​prev(i), *i)) is false.

25.7.31.3 Class chunk_by_view​::​iterator [range.chunk.by.iter]

namespace std::ranges { template<forward_range V, indirect_binary_predicate<iterator_t<V>, iterator_t<V>> Pred> requires view<V> && is_object_v<Pred> class chunk_by_view<V, Pred>::iterator { chunk_by_view* parent_ = nullptr; // exposition only iterator_t<V> current_ = iterator_t<V>(); // exposition only iterator_t<V> next_ = iterator_t<V>(); // exposition only constexpr iterator(chunk_by_view& parent, iterator_t<V> current, // exposition only iterator_t<V> next); public: using value_type = subrange<iterator_t<V>>; using difference_type = range_difference_t<V>; using iterator_category = input_iterator_tag; using iterator_concept = see below; iterator() = default; constexpr value_type operator*() const; constexpr iterator& operator++(); constexpr iterator operator++(int); constexpr iterator& operator--() requires bidirectional_range<V>; constexpr iterator operator--(int) requires bidirectional_range<V>; friend constexpr bool operator==(const iterator& x, const iterator& y); friend constexpr bool operator==(const iterator& x, default_sentinel_t); }; }
iterator​::​iterator_concept is defined as follows:
  • If V models bidirectional_range, then iterator_concept denotes bidirectional_iterator_tag.
  • Otherwise, iterator_concept denotes forward_iterator_tag.
constexpr iterator(chunk_by_view& parent, iterator_t<V> current, iterator_t<V> next);
Effects: Initializes parent_ with addressof(parent), current_ with current, and next_ with next.
constexpr value_type operator*() const;
Preconditions: current_ is not equal to next_.
Returns: subrange(current_, next_).
constexpr iterator& operator++();
Preconditions: current_ is not equal to next_.
Effects: Equivalent to: current_ = next_; next_ = parent_->find-next(current_); return *this;
constexpr iterator operator++(int);
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<V>;
Effects: Equivalent to: next_ = current_; current_ = parent_->find-prev(next_); return *this;
constexpr iterator operator--(int) requires bidirectional_range<V>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
friend constexpr bool operator==(const iterator& x, const iterator& y);
Returns: x.current_ == y.current_.
friend constexpr bool operator==(const iterator& x, default_sentinel_t);
Returns: x.current_ == x.next_.

25.7.32 Stride view [range.stride]

25.7.32.1 Overview [range.stride.overview]

stride_view presents a view of an underlying sequence, advancing over n elements at a time, as opposed to the usual single-step succession.
The name views​::​stride denotes a range adaptor object ([range.adaptor.object]).
Given subexpressions E and N, the expression views​::​stride(E, N) is expression-equivalent to stride_view(E, N).
[Example 1: auto input = views::iota(0, 12) | views::stride(3); ranges::copy(input, ostream_iterator<int>(cout, " ")); // prints 0 3 6 9 ranges::copy(input | views::reverse, ostream_iterator<int>(cout, " ")); // prints 9 6 3 0 — end example]

25.7.32.2 Class template stride_view [range.stride.view]

namespace std::ranges { template<input_range V> requires view<V> class stride_view : public view_interface<stride_view<V>> { V base_; // exposition only range_difference_t<V> stride_; // exposition only // [range.stride.iterator], class template stride_view​::​iterator template<bool> class iterator; // exposition only public: constexpr explicit stride_view(V base, range_difference_t<V> stride); constexpr V base() const & requires copy_constructible<V> { return base_; } constexpr V base() && { return std::move(base_); } constexpr range_difference_t<V> stride() const noexcept; constexpr auto begin() requires (!simple-view<V>) { return iterator<false>(this, ranges::begin(base_)); } constexpr auto begin() const requires range<const V> { return iterator<true>(this, ranges::begin(base_)); } constexpr auto end() requires (!simple-view<V>) { if constexpr (common_range<V> && sized_range<V> && forward_range<V>) { auto missing = (stride_ - ranges::distance(base_) % stride_) % stride_; return iterator<false>(this, ranges::end(base_), missing); } else if constexpr (common_range<V> && !bidirectional_range<V>) { return iterator<false>(this, ranges::end(base_)); } else { return default_sentinel; } } constexpr auto end() const requires range<const V> { if constexpr (common_range<const V> && sized_range<const V> && forward_range<const V>) { auto missing = (stride_ - ranges::distance(base_) % stride_) % stride_; return iterator<true>(this, ranges::end(base_), missing); } else if constexpr (common_range<const V> && !bidirectional_range<const V>) { return iterator<true>(this, ranges::end(base_)); } else { return default_sentinel; } } constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>; }; template<class R> stride_view(R&&, range_difference_t<R>) -> stride_view<views::all_t<R>>; }
constexpr stride_view(V base, range_difference_t<V> stride);
Preconditions: stride > 0 is true.
Effects: Initializes base_ with std​::​move(base) and stride_ with stride.
constexpr range_difference_t<V> stride() const noexcept;
Returns: stride_.
constexpr auto size() requires sized_range<V>; constexpr auto size() const requires sized_range<const V>;
Effects: Equivalent to: return to-unsigned-like(div-ceil(ranges::distance(base_), stride_));

25.7.32.3 Class template stride_view​::​iterator [range.stride.iterator]

namespace std::ranges { template<input_range V> requires view<V> template<bool Const> class stride_view<V>::iterator { using Parent = maybe-const<Const, stride_view>; // exposition only using Base = maybe-const<Const, V>; // exposition only iterator_t<Base> current_ = iterator_t<Base>(); // exposition only sentinel_t<Base> end_ = sentinel_t<Base>(); // exposition only range_difference_t<Base> stride_ = 0; // exposition only range_difference_t<Base> missing_ = 0; // exposition only constexpr iterator(Parent* parent, iterator_t<Base> current, // exposition only range_difference_t<Base> missing = 0); public: using difference_type = range_difference_t<Base>; using value_type = range_value_t<Base>; using iterator_concept = see below; using iterator_category = see below; // not always present iterator() requires default_initializable<iterator_t<Base>> = default; constexpr iterator(iterator<!Const> other) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>> && convertible_to<sentinel_t<V>, sentinel_t<Base>>; constexpr iterator_t<Base> base() &&; constexpr const iterator_t<Base>& base() const & noexcept; constexpr decltype(auto) operator*() const { return *current_; } constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<Base>; constexpr iterator& operator--() requires bidirectional_range<Base>; constexpr iterator operator--(int) requires bidirectional_range<Base>; constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>; constexpr iterator& operator-=(difference_type n) requires random_access_range<Base>; constexpr decltype(auto) operator[](difference_type n) const requires random_access_range<Base> { return *(*this + n); } friend constexpr bool operator==(const iterator& x, default_sentinel_t); friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>; friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>; friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>; friend constexpr iterator operator+(const iterator& x, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& x) requires random_access_range<Base>; friend constexpr iterator operator-(const iterator& x, difference_type n) requires random_access_range<Base>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>; friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>; friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>; friend constexpr range_rvalue_reference_t<Base> iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_))); friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_, y.current_))) requires indirectly_swappable<iterator_t<Base>>; }; }
iterator​::​iterator_concept is defined as follows:
The member typedef-name iterator_category is defined if and only if Base models forward_range.
In that case, iterator​::​iterator_category is defined as follows:
  • Let C denote the type iterator_traits<iterator_t<Base>>​::​iterator_category.
  • If C models derived_from<random_access_iterator_tag>, then iterator_category denotes random_access_iterator_tag.
  • Otherwise, iterator_category denotes C.
constexpr iterator(Parent* parent, iterator_t<Base> current, range_difference_t<Base> missing = 0);
Effects: Initializes current_ with std​::​move(current), end_ with ranges​::​end(parent->base_), stride_ with parent->stride_, and missing_ with missing.
constexpr iterator(iterator<!Const> i) requires Const && convertible_to<iterator_t<V>, iterator_t<Base>> && convertible_to<sentinel_t<V>, sentinel_t<Base>>;
Effects: Initializes current_ with std​::​move(i.current_), end_ with std​::​move(i.end_), stride_ with i.stride_, and missing_ with i.missing_.
constexpr iterator_t<Base> base() &&;
Returns: std​::​move(current_).
constexpr const iterator_t<Base>& base() const & noexcept;
Returns: current_.
constexpr iterator& operator++();
Preconditions: current_ != end_ is true.
Effects: Equivalent to: missing_ = ranges::advance(current_, stride_, end_); return *this;
constexpr void operator++(int);
Effects: Equivalent to: ++*this;
constexpr iterator operator++(int) requires forward_range<Base>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires bidirectional_range<Base>;
Effects: Equivalent to: ranges::advance(current_, missing_ - stride_); missing_ = 0; return *this;
constexpr iterator operator--(int) requires bidirectional_range<Base>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type n) requires random_access_range<Base>;
Preconditions: If n is positive, ranges​::​distance(current_, end_) > stride_ * (n - 1) is true.
[Note 1: 
If n is negative, the Effects paragraph implies a precondition.
— end note]
Effects: Equivalent to: if (n > 0) { ranges::advance(current_, stride_ * (n - 1)); missing_ = ranges::advance(current_, stride_, end_); } else if (n < 0) { ranges::advance(current_, stride_ * n + missing_); missing_ = 0; } return *this;
constexpr iterator& operator-=(difference_type x) requires random_access_range<Base>;
Effects: Equivalent to: return *this += -x;
friend constexpr bool operator==(const iterator& x, default_sentinel_t);
Returns: x.current_ == x.end_.
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<Base>>;
Returns: x.current_ == y.current_.
friend constexpr bool operator<(const iterator& x, const iterator& y) requires random_access_range<Base>;
Returns: x.current_ < y.current_.
friend constexpr bool operator>(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return y < x;
friend constexpr bool operator<=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(y < x);
friend constexpr bool operator>=(const iterator& x, const iterator& y) requires random_access_range<Base>;
Effects: Equivalent to: return !(x < y);
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires random_access_range<Base> && three_way_comparable<iterator_t<Base>>;
Returns: x.current_ <=> y.current_.
friend constexpr iterator operator+(const iterator& i, difference_type n) requires random_access_range<Base>; friend constexpr iterator operator+(difference_type n, const iterator& i) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r += n; return r;
friend constexpr iterator operator-(const iterator& i, difference_type n) requires random_access_range<Base>;
Effects: Equivalent to: auto r = i; r -= n; return r;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires sized_sentinel_for<iterator_t<Base>, iterator_t<Base>>;
Returns: Let N be (x.current_ - y.current_).
  • If Base models forward_range, (N + x.missing_ - y.missing_) / x.stride_.
  • Otherwise, if N is negative, -div-ceil(-N, x.stride_).
  • Otherwise, div-ceil(N, x.stride_).
friend constexpr difference_type operator-(default_sentinel_t y, const iterator& x) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Returns: div-ceil(x.end_ - x.current_, x.stride_).
friend constexpr difference_type operator-(const iterator& x, default_sentinel_t y) requires sized_sentinel_for<sentinel_t<Base>, iterator_t<Base>>;
Effects: Equivalent to: return -(y - x);
friend constexpr range_rvalue_reference_t<Base> iter_move(const iterator& i) noexcept(noexcept(ranges::iter_move(i.current_)));
Effects: Equivalent to: return ranges​::​iter_move(i.current_);
friend constexpr void iter_swap(const iterator& x, const iterator& y) noexcept(noexcept(ranges::iter_swap(x.current_, y.current_))) requires indirectly_swappable<iterator_t<Base>>;
Effects: Equivalent to: ranges​::​iter_swap(x.current_, y.current_);

25.7.33 Cartesian product view [range.cartesian]

25.7.33.1 Overview [range.cartesian.overview]

cartesian_product_view takes any non-zero number of ranges n and produces a view of tuples calculated by the n-ary cartesian product of the provided ranges.
The name views​::​cartesian_product denotes a customization point object ([customization.point.object]).
Given a pack of subexpressions Es, the expression views​::​cartesian_product(Es...) is expression-equivalent to
  • views​::​single(tuple()) if Es is an empty pack,
  • otherwise, cartesian_product_view<views​::​all_t<decltype((Es))>...>(Es...).
[Example 1: vector<int> v { 0, 1, 2 }; for (auto&& [a, b, c] : views::cartesian_product(v, v, v)) { cout << a << ' ' << b << ' ' << c << '\n'; } // The above prints // 0 0 0 // 0 0 1 // 0 0 2 // 0 1 0 // 0 1 1 // ... — end example]

25.7.33.2 Class template cartesian_product_view [range.cartesian.view]

namespace std::ranges { template<bool Const, class First, class... Vs> concept cartesian-product-is-random-access = // exposition only (random_access_range<maybe-const<Const, First>> && ... && (random_access_range<maybe-const<Const, Vs>> && sized_range<maybe-const<Const, Vs>>)); template<class R> concept cartesian-product-common-arg = // exposition only common_range<R> || (sized_range<R> && random_access_range<R>); template<bool Const, class First, class... Vs> concept cartesian-product-is-bidirectional = // exposition only (bidirectional_range<maybe-const<Const, First>> && ... && (bidirectional_range<maybe-const<Const, Vs>> && cartesian-product-common-arg<maybe-const<Const, Vs>>)); template<class First, class...> concept cartesian-product-is-common = // exposition only cartesian-product-common-arg<First>; template<class... Vs> concept cartesian-product-is-sized = // exposition only (sized_range<Vs> && ...); template<bool Const, template<class> class FirstSent, class First, class... Vs> concept cartesian-is-sized-sentinel = // exposition only (sized_sentinel_for<FirstSent<maybe-const<Const, First>>, iterator_t<maybe-const<Const, First>>> && ... && (sized_range<maybe-const<Const, Vs>> && sized_sentinel_for<iterator_t<maybe-const<Const, Vs>>, iterator_t<maybe-const<Const, Vs>>>)); template<cartesian-product-common-arg R> constexpr auto cartesian-common-arg-end(R& r) { // exposition only if constexpr (common_range<R>) { return ranges::end(r); } else { return ranges::begin(r) + ranges::distance(r); } } template<input_range First, forward_range... Vs> requires (view<First> && ... && view<Vs>) class cartesian_product_view : public view_interface<cartesian_product_view<First, Vs...>> { private: tuple<First, Vs...> bases_; // exposition only // [range.cartesian.iterator], class template cartesian_product_view​::​iterator template<bool Const> class iterator; // exposition only public: constexpr cartesian_product_view() = default; constexpr explicit cartesian_product_view(First first_base, Vs... bases); constexpr iterator<false> begin() requires (!simple-view<First> || ... || !simple-view<Vs>); constexpr iterator<true> begin() const requires (range<const First> && ... && range<const Vs>); constexpr iterator<false> end() requires ((!simple-view<First> || ... || !simple-view<Vs>) && cartesian-product-is-common<First, Vs...>); constexpr iterator<true> end() const requires cartesian-product-is-common<const First, const Vs...>; constexpr default_sentinel_t end() const noexcept; constexpr see below size() requires cartesian-product-is-sized<First, Vs...>; constexpr see below size() const requires cartesian-product-is-sized<const First, const Vs...>; }; template<class... Vs> cartesian_product_view(Vs&&...) -> cartesian_product_view<views::all_t<Vs>...>; }
constexpr explicit cartesian_product_view(First first_base, Vs... bases);
Effects: Initializes bases_ with std​::​move(first_base), std​::​move(bases)....
constexpr iterator<false> begin() requires (!simple-view<First> || ... || !simple-view<Vs>);
Effects: Equivalent to: return iterator<false>(*this, tuple-transform(ranges::begin, bases_));
constexpr iterator<true> begin() const requires (range<const First> && ... && range<const Vs>);
Effects: Equivalent to: return iterator<true>(*this, tuple-transform(ranges::begin, bases_));
constexpr iterator<false> end() requires ((!simple-view<First> || ... || !simple-view<Vs>) && cartesian-product-is-common<First, Vs...>); constexpr iterator<true> end() const requires cartesian-product-is-common<const First, const Vs...>;
Let:
  • is-const be true for the const-qualified overload, and false otherwise;
  • is-empty be true if the expression ranges​::​empty(rng) is true for any rng among the underlying ranges except the first one and false otherwise; and
  • begin-or-first-end(rng) be expression-equivalent to is-empty ? ranges​::​begin(rng) :cartesian-common-arg-end(rng) if rng is the first underlying range and ranges​::​begin(rng) otherwise.
Effects: Equivalent to: iterator<is-const> it(*this, tuple-transform( [](auto& rng){ return begin-or-first-end(rng); }, bases_)); return it;
constexpr default_sentinel_t end() const noexcept;
Returns: default_sentinel.
constexpr see below size() requires cartesian-product-is-sized<First, Vs...>; constexpr see below size() const requires cartesian-product-is-sized<const First, const Vs...>;
The return type is an implementation-defined unsigned-integer-like type.
Recommended practice: The return type should be the smallest unsigned-integer-like type that is sufficiently wide to store the product of the maximum sizes of all the underlying ranges, if such a type exists.
Let p be the product of the sizes of all the ranges in bases_.
Preconditions: p can be represented by the return type.
Returns: p.

25.7.33.3 Class template cartesian_product_view​::​iterator [range.cartesian.iterator]

namespace std::ranges { template<input_range First, forward_range... Vs> requires (view<First> && ... && view<Vs>) template<bool Const> class cartesian_product_view<First, Vs...>::iterator { public: using iterator_category = input_iterator_tag; using iterator_concept = see below; using value_type = tuple<range_value_t<maybe-const<Const, First>>, range_value_t<maybe-const<Const, Vs>>...>; using reference = tuple<range_reference_t<maybe-const<Const, First>>, range_reference_t<maybe-const<Const, Vs>>...>; using difference_type = see below; iterator() = default; constexpr iterator(iterator<!Const> i) requires Const && (convertible_to<iterator_t<First>, iterator_t<const First>> && ... && convertible_to<iterator_t<Vs>, iterator_t<const Vs>>); constexpr auto operator*() const; constexpr iterator& operator++(); constexpr void operator++(int); constexpr iterator operator++(int) requires forward_range<maybe-const<Const, First>>; constexpr iterator& operator--() requires cartesian-product-is-bidirectional<Const, First, Vs...>; constexpr iterator operator--(int) requires cartesian-product-is-bidirectional<Const, First, Vs...>; constexpr iterator& operator+=(difference_type x) requires cartesian-product-is-random-access<Const, First, Vs...>; constexpr iterator& operator-=(difference_type x) requires cartesian-product-is-random-access<Const, First, Vs...>; constexpr reference operator[](difference_type n) const requires cartesian-product-is-random-access<Const, First, Vs...>; friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<maybe-const<Const, First>>>; friend constexpr bool operator==(const iterator& x, default_sentinel_t); friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires all-random-access<Const, First, Vs...>; friend constexpr iterator operator+(const iterator& x, difference_type y) requires cartesian-product-is-random-access<Const, First, Vs...>; friend constexpr iterator operator+(difference_type x, const iterator& y) requires cartesian-product-is-random-access<Const, First, Vs...>; friend constexpr iterator operator-(const iterator& x, difference_type y) requires cartesian-product-is-random-access<Const, First, Vs...>; friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires cartesian-is-sized-sentinel<Const, iterator_t, First, Vs...>; friend constexpr difference_type operator-(const iterator& i, default_sentinel_t) requires cartesian-is-sized-sentinel<Const, sentinel_t, First, Vs...>; friend constexpr difference_type operator-(default_sentinel_t, const iterator& i) requires cartesian-is-sized-sentinel<Const, sentinel_t, First, Vs...>; friend constexpr auto iter_move(const iterator& i) noexcept(see below); friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires (indirectly_swappable<iterator_t<maybe-const<Const, First>>> && ... && indirectly_swappable<iterator_t<maybe-const<Const, Vs>>>); private: using Parent = maybe-const<Const, cartesian_product_view>; // exposition only Parent* parent_ = nullptr; // exposition only tuple<iterator_t<maybe-const<Const, First>>, iterator_t<maybe-const<Const, Vs>>...> current_; // exposition only template<size_t N = sizeof...(Vs)> constexpr void next(); // exposition only template<size_t N = sizeof...(Vs)> constexpr void prev(); // exposition only template<class Tuple> constexpr difference_type distance-from(const Tuple& t) const; // exposition only constexpr iterator(Parent& parent, tuple<iterator_t<maybe-const<Const, First>>, iterator_t<maybe-const<Const, Vs>>...> current); // exposition only }; }
iterator​::​iterator_concept is defined as follows:
iterator​::​difference_type is an implementation-defined signed-integer-like type.
Recommended practice: iterator​::​difference_type should be the smallest signed-integer-like type that is sufficiently wide to store the product of the maximum sizes of all underlying ranges if such a type exists.
template<size_t N = sizeof...(Vs)> constexpr void next();
Effects: Equivalent to: auto& it = std::get<N>(current_); ++it; if constexpr (N > 0) { if (it == ranges::end(std::get<N>(parent_->bases_))) { it = ranges::begin(std::get<N>(parent_->bases_)); next<N - 1>(); } }
template<size_t N = sizeof...(Vs)> constexpr void prev();
Effects: Equivalent to: auto& it = std::get<N>(current_); if constexpr (N > 0) { if (it == ranges::begin(std::get<N>(parent_->bases_))) { it = cartesian-common-arg-end(std::get<N>(parent_->bases_)); prev<N - 1>(); } } --it;
template<class Tuple> constexpr difference_type distance-from(const Tuple& t) const;
Let:
  • scaled-size(N) be the product of static_cast<difference_type>(ranges​::​size(std​::​get<N>(parent_->bases_))) and if N  ≤ sizeof...(Vs), otherwise static_cast<difference_type>(1);
  • scaled-distance(N) be the product of static_cast<difference_type>(std​::​get<N>(current_) - std​::​get<N>(t)) and ; and
  • scaled-sum be the sum of scaled-distance(N) for every integer 0  ≤ N  ≤ sizeof...(Vs).
Preconditions: scaled-sum can be represented by difference_type.
Returns: scaled-sum.
constexpr iterator(Parent& parent, tuple<iterator_t<maybe-const<Const, First>>, iterator_t<maybe-const<Const, Vs>>...> current);
Effects: Initializes parent_ with addressof(parent) and current_ with std​::​move(current).
constexpr iterator(iterator<!Const> i) requires Const && (convertible_to<iterator_t<First>, iterator_t<const First>> && ... && convertible_to<iterator_t<Vs>, iterator_t<const Vs>>);
Effects: Initializes parent_ with i.parent_ and current_ with std​::​move(i.current_).
constexpr auto operator*() const;
Effects: Equivalent to: return tuple-transform([](auto& i) -> decltype(auto) { return *i; }, current_);
constexpr iterator& operator++();
Effects: Equivalent to: next(); return *this;
constexpr void operator++(int);
Effects: Equivalent to ++*this.
constexpr iterator operator++(int) requires forward_range<maybe-const<Const, First>>;
Effects: Equivalent to: auto tmp = *this; ++*this; return tmp;
constexpr iterator& operator--() requires cartesian-product-is-bidirectional<Const, First, Vs...>;
Effects: Equivalent to: prev(); return *this;
constexpr iterator operator--(int) requires cartesian-product-is-bidirectional<Const, First, Vs...>;
Effects: Equivalent to: auto tmp = *this; --*this; return tmp;
constexpr iterator& operator+=(difference_type x) requires cartesian-product-is-random-access<Const, First, Vs...>;
Let orig be the value of *this before the call.
Let ret be:
  • If x > 0, the value of *this had next been called x times.
  • Otherwise, if x < 0, the value of *this had prev been called -x times.
  • Otherwise, orig.
Preconditions: x is in the range [ranges​::​distance(*this, ranges​::​begin(*parent_)),
ranges​::​distance(*this, ranges​::​end(*parent_))].
Effects: Sets the value of *this to ret.
Returns: *this.
Complexity: Constant.
constexpr iterator& operator-=(difference_type x) requires cartesian-product-is-random-access<Const, First, Vs...>;
Effects: Equivalent to: *this += -x; return *this;
constexpr reference operator[](difference_type n) const requires cartesian-product-is-random-access<Const, First, Vs...>;
Effects: Equivalent to: return *((*this) + n);
friend constexpr bool operator==(const iterator& x, const iterator& y) requires equality_comparable<iterator_t<maybe-const<Const, First>>>;
Effects: Equivalent to: return x.current_ == y.current_;
friend constexpr bool operator==(const iterator& x, default_sentinel_t);
Returns: true if std​::​get<i>(x.current_) == ranges​::​end(std​::​get<i>(x.parent_->bases_)) is true for any integer 0  ≤ i  ≤ sizeof...(Vs); otherwise, false.
friend constexpr auto operator<=>(const iterator& x, const iterator& y) requires all-random-access<Const, First, Vs...>;
Effects: Equivalent to: return x.current_ <=> y.current_;
friend constexpr iterator operator+(const iterator& x, difference_type y) requires cartesian-product-is-random-access<Const, First, Vs...>;
Effects: Equivalent to: return iterator(x) += y;
friend constexpr iterator operator+(difference_type x, const iterator& y) requires cartesian-product-is-random-access<Const, First, Vs...>;
Effects: Equivalent to: return y + x;
friend constexpr iterator operator-(const iterator& x, difference_type y) requires cartesian-product-is-random-access<Const, First, Vs...>;
Effects: Equivalent to: return iterator(x) -= y;
friend constexpr difference_type operator-(const iterator& x, const iterator& y) requires cartesian-is-sized-sentinel<Const, iterator_t, First, Vs...>;
Effects: Equivalent to: return x.distance-from(y.current_);
friend constexpr difference_type operator-(const iterator& i, default_sentinel_t) requires cartesian-is-sized-sentinel<Const, sentinel_t, First, Vs...>;
Let end-tuple be an object of a type that is a specialization of tuple, such that:
  • std​::​get<0>(end-tuple) has the same value as ranges​::​end(std​::​get<0>(i.parent_->bases_));
  • std​::​get<N>(end-tuple) has the same value as ranges​::​begin(std​::​get<N>(i.parent_->bases_)) for every integer 1  ≤ N  ≤ sizeof...(Vs).
Effects: Equivalent to: return i.distance-from(end-tuple);
friend constexpr difference_type operator-(default_sentinel_t s, const iterator& i) requires cartesian-is-sized-sentinel<Const, sentinel_t, First, Vs...>;
Effects: Equivalent to: return -(i - s);
friend constexpr auto iter_move(const iterator& i) noexcept(see below);
Effects: Equivalent to: return tuple-transform(ranges​::​iter_move, i.current_);
Remarks: The exception specification is equivalent to the logical and of the following expressions:
  • noexcept(ranges​::​iter_move(std​::​get<N>(i.current_))) for every integer
    0  ≤ N  ≤ sizeof...(Vs),
  • is_nothrow_move_constructible_v<range_rvalue_reference_t<maybe-const<Const, T>>>
    for every type T in First, Vs....
friend constexpr void iter_swap(const iterator& l, const iterator& r) noexcept(see below) requires (indirectly_swappable<iterator_t<maybe-const<Const, First>>> && ... && indirectly_swappable<iterator_t<maybe-const<Const, Vs>>>);
Effects: For every integer 0  ≤ i  ≤ sizeof...(Vs), performs: ranges::iter_swap(std::get<i>(l.current_), std::get<i>(r.current_))
Remarks: The exception specification is equivalent to the logical and of the following expressions:
  • noexcept(ranges​::​iter_swap(std​::​get<i>(l.current_), std​::​get<i>(r.current_))) for
    every integer 0  ≤ i  ≤ sizeof...(Vs).

25.8 Range generators [coro.generator]

25.8.1 Overview [coroutine.generator.overview]

Class template generator presents a view of the elements yielded by the evaluation of a coroutine.
A generator generates a sequence of elements by repeatedly resuming the coroutine from which it was returned.
Elements of the sequence are produced by the coroutine each time a co_yield statement is evaluated.
When the co_yield statement is of the form co_yield elements_of(r), each element of the range r is successively produced as an element of the sequence.
[Example 1: generator<int> ints(int start = 0) { while (true) co_yield start++; } void f() { for (auto i : ints() | views::take(3)) cout << i << ' '; // prints 0 1 2 } — end example]

25.8.2 Header <generator> synopsis [generator.syn]

namespace std { // [coro.generator.class], class template generator template<class Ref, class Val = void, class Allocator = void> class generator; namespace pmr { template<class Ref, class Val = void> using generator = std::generator<Ref, Val, polymorphic_allocator<>>; } }

25.8.3 Class template generator [coro.generator.class]

namespace std { template<class Ref, class Val = void, class Allocator = void> class generator : public ranges::view_interface<generator<Ref, Val, Allocator>> { private: using value = conditional_t<is_void_v<Val>, remove_cvref_t<Ref>, Val>; // exposition only using reference = conditional_t<is_void_v<Val>, Ref&&, Ref>; // exposition only // [coro.generator.iterator], class generator​::​iterator class iterator; // exposition only public: using yielded = conditional_t<is_reference_v<reference>, reference, const reference&>; // [coro.generator.promise], class generator​::​promise_type class promise_type; generator(const generator&) = delete; generator(generator&& other) noexcept; ~generator(); generator& operator=(generator other) noexcept; iterator begin(); default_sentinel_t end() const noexcept; private: coroutine_handle<promise_type> coroutine_ = nullptr; // exposition only unique_ptr<stack<coroutine_handle<>>> active_; // exposition only }; }
Mandates:
If Allocator is not void, it shall meet the Cpp17Allocator requirements.
Specializations of generator model view and input_range.
The behavior of a program that adds a specialization for generator is undefined.

25.8.4 Members [coro.generator.members]

generator(generator&& other) noexcept;
Effects: Initializes coroutine_ with exchange(other.coroutine_, {}) and active_ with exchange(​other.active_, nullptr).
[Note 1: 
Iterators previously obtained from other are not invalidated; they become iterators into *this.
— end note]
~generator();
Effects: Equivalent to: if (coroutine_) { coroutine_.destroy(); }
[Note 2: 
Ownership of recursively yielded generators is held in awaitable objects in the coroutine frame of the yielding generator, so destroying the root generator effectively destroys the entire stack of yielded generators.
— end note]
generator& operator=(generator other) noexcept;
Effects: Equivalent to: swap(coroutine_, other.coroutine_); swap(active_, other.active_);
Returns: *this.
[Note 3: 
Iterators previously obtained from other are not invalidated; they become iterators into *this.
— end note]
iterator begin();
Preconditions: coroutine_ refers to a coroutine suspended at its initial suspend point ([dcl.fct.def.coroutine]).
Effects: Pushes coroutine_ into *active_, then evaluates coroutine_.resume().
Returns: An iterator object whose member coroutine_ refers to the same coroutine as does coroutine_.
[Note 4: 
A program that calls begin more than once on the same generator has undefined behavior.
— end note]
default_sentinel_t end() const noexcept;
Returns: default_sentinel.

25.8.5 Class generator​::​promise_type [coro.generator.promise]

namespace std { template<class Ref, class Val, class Allocator> class generator<Ref, Val, Allocator>::promise_type { public: generator get_return_object() noexcept; suspend_always initial_suspend() const noexcept { return {}; } auto final_suspend() noexcept; suspend_always yield_value(yielded val) noexcept; auto yield_value(const remove_reference_t<yielded>& lval) requires is_rvalue_reference_v<yielded> && constructible_from<remove_cvref_t<yielded>, const remove_reference_t<yielded>&>; template<class R2, class V2, class Alloc2, class Unused> requires same_as<typename generator<R2, V2, Alloc2>::yielded, yielded> auto yield_value(ranges::elements_of<generator<R2, V2, Alloc2>&&, Unused> g) noexcept; template<ranges::input_range R, class Alloc> requires convertible_to<ranges::range_reference_t<R>, yielded> auto yield_value(ranges::elements_of<R, Alloc> r); void await_transform() = delete; void return_void() const noexcept {} void unhandled_exception(); void* operator new(size_t size) requires same_as<Allocator, void> || default_initializable<Allocator>; template<class Alloc, class... Args> requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator> void* operator new(size_t size, allocator_arg_t, const Alloc& alloc, const Args&...); template<class This, class Alloc, class... Args> requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator> void* operator new(size_t size, const This&, allocator_arg_t, const Alloc& alloc, const Args&...); void operator delete(void* pointer, size_t size) noexcept; private: add_pointer_t<yielded> value_ = nullptr; // exposition only exception_ptr except_; // exposition only }; }
generator get_return_object() noexcept;
Returns: A generator object whose member coroutine_ is coroutine_handle<promise_type>​::​​from_promise(*this), and whose member active_ points to an empty stack.
auto final_suspend() noexcept;
Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of *active_ of some generator object x.
This function is called by that coroutine upon reaching its final suspend point ([dcl.fct.def.coroutine]).
Returns: An awaitable object of unspecified type ([expr.await]) whose member functions arrange for the calling coroutine to be suspended, pop the coroutine handle from the top of *x.active_, and resume execution of the coroutine referred to by x.active_->top() if *x.active_ is not empty.
If it is empty, control flow returns to the current coroutine caller or resumer ([dcl.fct.def.coroutine]).
suspend_always yield_value(yielded val) noexcept;
Effects: Equivalent to value_ = addressof(val).
Returns: {}.
auto yield_value(const remove_reference_t<yielded>& lval) requires is_rvalue_reference_v<yielded> && constructible_from<remove_cvref_t<yielded>, const remove_reference_t<yielded>&>;
Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of *active_ of some generator object.
Returns: An awaitable object of an unspecified type ([expr.await]) that stores an object of type remove_cvref_t<yielded> direct-non-list-initialized with lval, whose member functions arrange for value_ to point to that stored object and then suspend the coroutine.
Throws: Any exception thrown by the initialization of the stored object.
Remarks: A yield-expression that calls this function has type void ([expr.yield]).
template<class R2, class V2, class Alloc2, class Unused> requires same_as<typename generator<R2, V2, Alloc2>::yielded, yielded> auto yield_value(ranges::elements_of<generator<R2, V2, Alloc2>&&, Unused> g) noexcept;
Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of *active_ of some generator object x.
The coroutine referred to by g.range.coroutine_ is suspended at its initial suspend point.
Returns: An awaitable object of an unspecified type ([expr.await]) into which g.range is moved, whose member await_ready returns false, whose member await_suspend pushes g.range.coroutine_ into *x.active_ and resumes execution of the coroutine referred to by g.range.coroutine_, and whose member await_resume evaluates rethrow_exception(except_) if bool(except_) is true.
If bool(except_) is false, the await_resume member has no effects.
Remarks: A yield-expression that calls this function has type void ([expr.yield]).
template<ranges::input_range R, class Alloc> requires convertible_to<ranges::range_reference_t<R>, yielded> auto yield_value(ranges::elements_of<R, Alloc> r);
Effects: Equivalent to: auto nested = [](allocator_arg_t, Alloc, ranges::iterator_t<R> i, ranges::sentinel_t<R> s) -> generator<yielded, ranges::range_value_t<R>, Alloc> { for (; i != s; ++i) { co_yield static_cast<yielded>(*i); } }; return yield_value(ranges::elements_of(nested( allocator_arg, r.allocator, ranges::begin(r.range), ranges::end(r.range))));
[Note 1: 
A yield-expression that calls this function has type void ([expr.yield]).
— end note]
void unhandled_exception();
Preconditions: A handle referring to the coroutine whose promise object is *this is at the top of *active_ of some generator object x.
Effects: If the handle referring to the coroutine whose promise object is *this is the sole element of *x.active_, equivalent to throw, otherwise, assigns current_exception() to except_.
void* operator new(size_t size) requires same_as<Allocator, void> || default_initializable<Allocator>; template<class Alloc, class... Args> requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator> void* operator new(size_t size, allocator_arg_t, const Alloc& alloc, const Args&...); template<class This, class Alloc, class... Args> requires same_as<Allocator, void> || convertible_to<const Alloc&, Allocator> void* operator new(size_t size, const This&, allocator_arg_t, const Alloc& alloc, const Args&...);
Let A be
  • Allocator, if it is not void,
  • Alloc for the overloads with a template parameter Alloc, or
  • allocator<void> otherwise.
Let B be allocator_traits<A>​::​template rebind_alloc<U> where U is an unspecified type whose size and alignment are both __STDCPP_DEFAULT_NEW_ALIGNMENT__.
Mandates: allocator_traits<B>​::​pointer is a pointer type.
Effects: Initializes an allocator b of type B with A(alloc), for the overloads with a function parameter alloc, and with A() otherwise.
Uses b to allocate storage for the smallest array of U sufficient to provide storage for a coroutine state of size size, and unspecified additional state necessary to ensure that operator delete can later deallocate this memory block with an allocator equal to b.
Returns: A pointer to the allocated storage.
void operator delete(void* pointer, size_t size) noexcept;
Preconditions: pointer was returned from an invocation of one of the above overloads of operator new with a size argument equal to size.
Effects: Deallocates the storage pointed to by pointer using an allocator equivalent to that used to allocate it.

25.8.6 Class generator​::​iterator [coro.generator.iterator]

namespace std { template<class Ref, class Val, class Allocator> class generator<Ref, Val, Allocator>::iterator { public: using value_type = value; using difference_type = ptrdiff_t; iterator(iterator&& other) noexcept; iterator& operator=(iterator&& other) noexcept; reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference>); iterator& operator++(); void operator++(int); friend bool operator==(const iterator& i, default_sentinel_t); private: coroutine_handle<promise_type> coroutine_; // exposition only }; }
iterator(iterator&& other) noexcept;
Effects: Initializes coroutine_ with exchange(other.coroutine_, {}).
iterator& operator=(iterator&& other) noexcept;
Effects: Equivalent to coroutine_ = exchange(other.coroutine_, {}).
Returns: *this.
reference operator*() const noexcept(is_nothrow_copy_constructible_v<reference>);
Preconditions: For some generator object x, coroutine_ is in *x.active_ and x.active_->top() refers to a suspended coroutine with promise object p.
Effects: Equivalent to: return static_cast<reference>(*p.value_);
iterator& operator++();
Preconditions: For some generator object x, coroutine_ is in *x.active_.
Effects: Equivalent to x.active_->top().resume().
Returns: *this.
void operator++(int);
Effects: Equivalent to ++*this.
friend bool operator==(const iterator& i, default_sentinel_t);
Effects: Equivalent to: return i.coroutine_.done();